LCOV - code coverage report
Current view: top level - gcc - wide-int.h (source / functions) Hit Total Coverage
Test: gcc.info Lines: 297 321 92.5 %
Date: 2023-07-19 08:18:47 Functions: 58 62 93.5 %

          Line data    Source code
       1             : /* Operations with very long integers.  -*- C++ -*-
       2             :    Copyright (C) 2012-2023 Free Software Foundation, Inc.
       3             : 
       4             : This file is part of GCC.
       5             : 
       6             : GCC is free software; you can redistribute it and/or modify it
       7             : under the terms of the GNU General Public License as published by the
       8             : Free Software Foundation; either version 3, or (at your option) any
       9             : later version.
      10             : 
      11             : GCC is distributed in the hope that it will be useful, but WITHOUT
      12             : ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
      13             : FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
      14             : for more details.
      15             : 
      16             : You should have received a copy of the GNU General Public License
      17             : along with GCC; see the file COPYING3.  If not see
      18             : <http://www.gnu.org/licenses/>.  */
      19             : 
      20             : #ifndef WIDE_INT_H
      21             : #define WIDE_INT_H
      22             : 
      23             : /* wide-int.[cc|h] implements a class that efficiently performs
      24             :    mathematical operations on finite precision integers.  wide_ints
      25             :    are designed to be transient - they are not for long term storage
      26             :    of values.  There is tight integration between wide_ints and the
      27             :    other longer storage GCC representations (rtl and tree).
      28             : 
      29             :    The actual precision of a wide_int depends on the flavor.  There
      30             :    are three predefined flavors:
      31             : 
      32             :      1) wide_int (the default).  This flavor does the math in the
      33             :      precision of its input arguments.  It is assumed (and checked)
      34             :      that the precisions of the operands and results are consistent.
      35             :      This is the most efficient flavor.  It is not possible to examine
      36             :      bits above the precision that has been specified.  Because of
      37             :      this, the default flavor has semantics that are simple to
      38             :      understand and in general model the underlying hardware that the
      39             :      compiler is targetted for.
      40             : 
      41             :      This flavor must be used at the RTL level of gcc because there
      42             :      is, in general, not enough information in the RTL representation
      43             :      to extend a value beyond the precision specified in the mode.
      44             : 
      45             :      This flavor should also be used at the TREE and GIMPLE levels of
      46             :      the compiler except for the circumstances described in the
      47             :      descriptions of the other two flavors.
      48             : 
      49             :      The default wide_int representation does not contain any
      50             :      information inherent about signedness of the represented value,
      51             :      so it can be used to represent both signed and unsigned numbers.
      52             :      For operations where the results depend on signedness (full width
      53             :      multiply, division, shifts, comparisons, and operations that need
      54             :      overflow detected), the signedness must be specified separately.
      55             : 
      56             :      2) offset_int.  This is a fixed-precision integer that can hold
      57             :      any address offset, measured in either bits or bytes, with at
      58             :      least one extra sign bit.  At the moment the maximum address
      59             :      size GCC supports is 64 bits.  With 8-bit bytes and an extra
      60             :      sign bit, offset_int therefore needs to have at least 68 bits
      61             :      of precision.  We round this up to 128 bits for efficiency.
      62             :      Values of type T are converted to this precision by sign- or
      63             :      zero-extending them based on the signedness of T.
      64             : 
      65             :      The extra sign bit means that offset_int is effectively a signed
      66             :      128-bit integer, i.e. it behaves like int128_t.
      67             : 
      68             :      Since the values are logically signed, there is no need to
      69             :      distinguish between signed and unsigned operations.  Sign-sensitive
      70             :      comparison operators <, <=, > and >= are therefore supported.
      71             :      Shift operators << and >> are also supported, with >> being
      72             :      an _arithmetic_ right shift.
      73             : 
      74             :      [ Note that, even though offset_int is effectively int128_t,
      75             :        it can still be useful to use unsigned comparisons like
      76             :        wi::leu_p (a, b) as a more efficient short-hand for
      77             :        "a >= 0 && a <= b". ]
      78             : 
      79             :      3) widest_int.  This representation is an approximation of
      80             :      infinite precision math.  However, it is not really infinite
      81             :      precision math as in the GMP library.  It is really finite
      82             :      precision math where the precision is 4 times the size of the
      83             :      largest integer that the target port can represent.
      84             : 
      85             :      Like offset_int, widest_int is wider than all the values that
      86             :      it needs to represent, so the integers are logically signed.
      87             :      Sign-sensitive comparison operators <, <=, > and >= are supported,
      88             :      as are << and >>.
      89             : 
      90             :      There are several places in the GCC where this should/must be used:
      91             : 
      92             :      * Code that does induction variable optimizations.  This code
      93             :        works with induction variables of many different types at the
      94             :        same time.  Because of this, it ends up doing many different
      95             :        calculations where the operands are not compatible types.  The
      96             :        widest_int makes this easy, because it provides a field where
      97             :        nothing is lost when converting from any variable,
      98             : 
      99             :      * There are a small number of passes that currently use the
     100             :        widest_int that should use the default.  These should be
     101             :        changed.
     102             : 
     103             :    There are surprising features of offset_int and widest_int
     104             :    that the users should be careful about:
     105             : 
     106             :      1) Shifts and rotations are just weird.  You have to specify a
     107             :      precision in which the shift or rotate is to happen in.  The bits
     108             :      above this precision are zeroed.  While this is what you
     109             :      want, it is clearly non obvious.
     110             : 
     111             :      2) Larger precision math sometimes does not produce the same
     112             :      answer as would be expected for doing the math at the proper
     113             :      precision.  In particular, a multiply followed by a divide will
     114             :      produce a different answer if the first product is larger than
     115             :      what can be represented in the input precision.
     116             : 
     117             :    The offset_int and the widest_int flavors are more expensive
     118             :    than the default wide int, so in addition to the caveats with these
     119             :    two, the default is the prefered representation.
     120             : 
     121             :    All three flavors of wide_int are represented as a vector of
     122             :    HOST_WIDE_INTs.  The default and widest_int vectors contain enough elements
     123             :    to hold a value of MAX_BITSIZE_MODE_ANY_INT bits.  offset_int contains only
     124             :    enough elements to hold ADDR_MAX_PRECISION bits.  The values are stored
     125             :    in the vector with the least significant HOST_BITS_PER_WIDE_INT bits
     126             :    in element 0.
     127             : 
     128             :    The default wide_int contains three fields: the vector (VAL),
     129             :    the precision and a length (LEN).  The length is the number of HWIs
     130             :    needed to represent the value.  widest_int and offset_int have a
     131             :    constant precision that cannot be changed, so they only store the
     132             :    VAL and LEN fields.
     133             : 
     134             :    Since most integers used in a compiler are small values, it is
     135             :    generally profitable to use a representation of the value that is
     136             :    as small as possible.  LEN is used to indicate the number of
     137             :    elements of the vector that are in use.  The numbers are stored as
     138             :    sign extended numbers as a means of compression.  Leading
     139             :    HOST_WIDE_INTs that contain strings of either -1 or 0 are removed
     140             :    as long as they can be reconstructed from the top bit that is being
     141             :    represented.
     142             : 
     143             :    The precision and length of a wide_int are always greater than 0.
     144             :    Any bits in a wide_int above the precision are sign-extended from the
     145             :    most significant bit.  For example, a 4-bit value 0x8 is represented as
     146             :    VAL = { 0xf...fff8 }.  However, as an optimization, we allow other integer
     147             :    constants to be represented with undefined bits above the precision.
     148             :    This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN,
     149             :    so that the INTEGER_CST representation can be used both in TYPE_PRECISION
     150             :    and in wider precisions.
     151             : 
     152             :    There are constructors to create the various forms of wide_int from
     153             :    trees, rtl and constants.  For trees the options are:
     154             : 
     155             :              tree t = ...;
     156             :              wi::to_wide (t)     // Treat T as a wide_int
     157             :              wi::to_offset (t)   // Treat T as an offset_int
     158             :              wi::to_widest (t)   // Treat T as a widest_int
     159             : 
     160             :    All three are light-weight accessors that should have no overhead
     161             :    in release builds.  If it is useful for readability reasons to
     162             :    store the result in a temporary variable, the preferred method is:
     163             : 
     164             :              wi::tree_to_wide_ref twide = wi::to_wide (t);
     165             :              wi::tree_to_offset_ref toffset = wi::to_offset (t);
     166             :              wi::tree_to_widest_ref twidest = wi::to_widest (t);
     167             : 
     168             :    To make an rtx into a wide_int, you have to pair it with a mode.
     169             :    The canonical way to do this is with rtx_mode_t as in:
     170             : 
     171             :              rtx r = ...
     172             :              wide_int x = rtx_mode_t (r, mode);
     173             : 
     174             :    Similarly, a wide_int can only be constructed from a host value if
     175             :    the target precision is given explicitly, such as in:
     176             : 
     177             :              wide_int x = wi::shwi (c, prec); // sign-extend C if necessary
     178             :              wide_int y = wi::uhwi (c, prec); // zero-extend C if necessary
     179             : 
     180             :    However, offset_int and widest_int have an inherent precision and so
     181             :    can be initialized directly from a host value:
     182             : 
     183             :              offset_int x = (int) c;          // sign-extend C
     184             :              widest_int x = (unsigned int) c; // zero-extend C
     185             : 
     186             :    It is also possible to do arithmetic directly on rtx_mode_ts and
     187             :    constants.  For example:
     188             : 
     189             :              wi::add (r1, r2);    // add equal-sized rtx_mode_ts r1 and r2
     190             :              wi::add (r1, 1);     // add 1 to rtx_mode_t r1
     191             :              wi::lshift (1, 100); // 1 << 100 as a widest_int
     192             : 
     193             :    Many binary operations place restrictions on the combinations of inputs,
     194             :    using the following rules:
     195             : 
     196             :    - {rtx, wide_int} op {rtx, wide_int} -> wide_int
     197             :        The inputs must be the same precision.  The result is a wide_int
     198             :        of the same precision
     199             : 
     200             :    - {rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int
     201             :      (un)signed HOST_WIDE_INT op {rtx, wide_int} -> wide_int
     202             :        The HOST_WIDE_INT is extended or truncated to the precision of
     203             :        the other input.  The result is a wide_int of the same precision
     204             :        as that input.
     205             : 
     206             :    - (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int
     207             :        The inputs are extended to widest_int precision and produce a
     208             :        widest_int result.
     209             : 
     210             :    - offset_int op offset_int -> offset_int
     211             :      offset_int op (un)signed HOST_WIDE_INT -> offset_int
     212             :      (un)signed HOST_WIDE_INT op offset_int -> offset_int
     213             : 
     214             :    - widest_int op widest_int -> widest_int
     215             :      widest_int op (un)signed HOST_WIDE_INT -> widest_int
     216             :      (un)signed HOST_WIDE_INT op widest_int -> widest_int
     217             : 
     218             :    Other combinations like:
     219             : 
     220             :    - widest_int op offset_int and
     221             :    - wide_int op offset_int
     222             : 
     223             :    are not allowed.  The inputs should instead be extended or truncated
     224             :    so that they match.
     225             : 
     226             :    The inputs to comparison functions like wi::eq_p and wi::lts_p
     227             :    follow the same compatibility rules, although their return types
     228             :    are different.  Unary functions on X produce the same result as
     229             :    a binary operation X + X.  Shift functions X op Y also produce
     230             :    the same result as X + X; the precision of the shift amount Y
     231             :    can be arbitrarily different from X.  */
     232             : 
     233             : /* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very
     234             :    early examination of the target's mode file.  The WIDE_INT_MAX_ELTS
     235             :    can accomodate at least 1 more bit so that unsigned numbers of that
     236             :    mode can be represented as a signed value.  Note that it is still
     237             :    possible to create fixed_wide_ints that have precisions greater than
     238             :    MAX_BITSIZE_MODE_ANY_INT.  This can be useful when representing a
     239             :    double-width multiplication result, for example.  */
     240             : #define WIDE_INT_MAX_ELTS \
     241             :   ((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) / HOST_BITS_PER_WIDE_INT)
     242             : 
     243             : #define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT)
     244             : 
     245             : /* This is the max size of any pointer on any machine.  It does not
     246             :    seem to be as easy to sniff this out of the machine description as
     247             :    it is for MAX_BITSIZE_MODE_ANY_INT since targets may support
     248             :    multiple address sizes and may have different address sizes for
     249             :    different address spaces.  However, currently the largest pointer
     250             :    on any platform is 64 bits.  When that changes, then it is likely
     251             :    that a target hook should be defined so that targets can make this
     252             :    value larger for those targets.  */
     253             : #define ADDR_MAX_BITSIZE 64
     254             : 
     255             : /* This is the internal precision used when doing any address
     256             :    arithmetic.  The '4' is really 3 + 1.  Three of the bits are for
     257             :    the number of extra bits needed to do bit addresses and the other bit
     258             :    is to allow everything to be signed without loosing any precision.
     259             :    Then everything is rounded up to the next HWI for efficiency.  */
     260             : #define ADDR_MAX_PRECISION \
     261             :   ((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) \
     262             :    & ~(HOST_BITS_PER_WIDE_INT - 1))
     263             : 
     264             : /* The number of HWIs needed to store an offset_int.  */
     265             : #define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT)
     266             : 
     267             : /* The max number of HWIs needed to store a wide_int of PRECISION.  */
     268             : #define WIDE_INT_MAX_HWIS(PRECISION) \
     269             :   ((PRECISION + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT)
     270             : 
     271             : /* The type of result produced by a binary operation on types T1 and T2.
     272             :    Defined purely for brevity.  */
     273             : #define WI_BINARY_RESULT(T1, T2) \
     274             :   typename wi::binary_traits <T1, T2>::result_type
     275             : 
     276             : /* Likewise for binary operators, which excludes the case in which neither
     277             :    T1 nor T2 is a wide-int-based type.  */
     278             : #define WI_BINARY_OPERATOR_RESULT(T1, T2) \
     279             :   typename wi::binary_traits <T1, T2>::operator_result
     280             : 
     281             : /* The type of result produced by T1 << T2.  Leads to substitution failure
     282             :    if the operation isn't supported.  Defined purely for brevity.  */
     283             : #define WI_SIGNED_SHIFT_RESULT(T1, T2) \
     284             :   typename wi::binary_traits <T1, T2>::signed_shift_result_type
     285             : 
     286             : /* The type of result produced by a sign-agnostic binary predicate on
     287             :    types T1 and T2.  This is bool if wide-int operations make sense for
     288             :    T1 and T2 and leads to substitution failure otherwise.  */
     289             : #define WI_BINARY_PREDICATE_RESULT(T1, T2) \
     290             :   typename wi::binary_traits <T1, T2>::predicate_result
     291             : 
     292             : /* The type of result produced by a signed binary predicate on types T1 and T2.
     293             :    This is bool if signed comparisons make sense for T1 and T2 and leads to
     294             :    substitution failure otherwise.  */
     295             : #define WI_SIGNED_BINARY_PREDICATE_RESULT(T1, T2) \
     296             :   typename wi::binary_traits <T1, T2>::signed_predicate_result
     297             : 
     298             : /* The type of result produced by a unary operation on type T.  */
     299             : #define WI_UNARY_RESULT(T) \
     300             :   typename wi::binary_traits <T, T>::result_type
     301             : 
     302             : /* Define a variable RESULT to hold the result of a binary operation on
     303             :    X and Y, which have types T1 and T2 respectively.  Define VAL to
     304             :    point to the blocks of RESULT.  Once the user of the macro has
     305             :    filled in VAL, it should call RESULT.set_len to set the number
     306             :    of initialized blocks.  */
     307             : #define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \
     308             :   WI_BINARY_RESULT (T1, T2) RESULT = \
     309             :     wi::int_traits <WI_BINARY_RESULT (T1, T2)>::get_binary_result (X, Y); \
     310             :   HOST_WIDE_INT *VAL = RESULT.write_val ()
     311             : 
     312             : /* Similar for the result of a unary operation on X, which has type T.  */
     313             : #define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \
     314             :   WI_UNARY_RESULT (T) RESULT = \
     315             :     wi::int_traits <WI_UNARY_RESULT (T)>::get_binary_result (X, X); \
     316             :   HOST_WIDE_INT *VAL = RESULT.write_val ()
     317             : 
     318             : template <typename T> class generic_wide_int;
     319             : template <int N> class fixed_wide_int_storage;
     320             : class wide_int_storage;
     321             : 
     322             : /* An N-bit integer.  Until we can use typedef templates, use this instead.  */
     323             : #define FIXED_WIDE_INT(N) \
     324             :   generic_wide_int < fixed_wide_int_storage <N> >
     325             : 
     326             : typedef generic_wide_int <wide_int_storage> wide_int;
     327             : typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int;
     328             : typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION) widest_int;
     329             : /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
     330             :    so as not to confuse gengtype.  */
     331             : typedef generic_wide_int < fixed_wide_int_storage <WIDE_INT_MAX_PRECISION * 2> > widest2_int;
     332             : 
     333             : /* wi::storage_ref can be a reference to a primitive type,
     334             :    so this is the conservatively-correct setting.  */
     335             : template <bool SE, bool HDP = true>
     336             : class wide_int_ref_storage;
     337             : 
     338             : typedef generic_wide_int <wide_int_ref_storage <false> > wide_int_ref;
     339             : 
     340             : /* This can be used instead of wide_int_ref if the referenced value is
     341             :    known to have type T.  It carries across properties of T's representation,
     342             :    such as whether excess upper bits in a HWI are defined, and can therefore
     343             :    help avoid redundant work.
     344             : 
     345             :    The macro could be replaced with a template typedef, once we're able
     346             :    to use those.  */
     347             : #define WIDE_INT_REF_FOR(T) \
     348             :   generic_wide_int \
     349             :     <wide_int_ref_storage <wi::int_traits <T>::is_sign_extended, \
     350             :                            wi::int_traits <T>::host_dependent_precision> >
     351             : 
     352             : namespace wi
     353             : {
     354             :   /* Operations that calculate overflow do so even for
     355             :      TYPE_OVERFLOW_WRAPS types.  For example, adding 1 to +MAX_INT in
     356             :      an unsigned int is 0 and does not overflow in C/C++, but wi::add
     357             :      will set the overflow argument in case it's needed for further
     358             :      analysis.
     359             : 
     360             :      For operations that require overflow, these are the different
     361             :      types of overflow.  */
     362             :   enum overflow_type {
     363             :     OVF_NONE = 0,
     364             :     OVF_UNDERFLOW = -1,
     365             :     OVF_OVERFLOW = 1,
     366             :     /* There was an overflow, but we are unsure whether it was an
     367             :        overflow or an underflow.  */
     368             :     OVF_UNKNOWN = 2
     369             :   };
     370             : 
     371             :   /* Classifies an integer based on its precision.  */
     372             :   enum precision_type {
     373             :     /* The integer has both a precision and defined signedness.  This allows
     374             :        the integer to be converted to any width, since we know whether to fill
     375             :        any extra bits with zeros or signs.  */
     376             :     FLEXIBLE_PRECISION,
     377             : 
     378             :     /* The integer has a variable precision but no defined signedness.  */
     379             :     VAR_PRECISION,
     380             : 
     381             :     /* The integer has a constant precision (known at GCC compile time)
     382             :        and is signed.  */
     383             :     CONST_PRECISION
     384             :   };
     385             : 
     386             :   /* This class, which has no default implementation, is expected to
     387             :      provide the following members:
     388             : 
     389             :      static const enum precision_type precision_type;
     390             :        Classifies the type of T.
     391             : 
     392             :      static const unsigned int precision;
     393             :        Only defined if precision_type == CONST_PRECISION.  Specifies the
     394             :        precision of all integers of type T.
     395             : 
     396             :      static const bool host_dependent_precision;
     397             :        True if the precision of T depends (or can depend) on the host.
     398             : 
     399             :      static unsigned int get_precision (const T &x)
     400             :        Return the number of bits in X.
     401             : 
     402             :      static wi::storage_ref *decompose (HOST_WIDE_INT *scratch,
     403             :                                         unsigned int precision, const T &x)
     404             :        Decompose X as a PRECISION-bit integer, returning the associated
     405             :        wi::storage_ref.  SCRATCH is available as scratch space if needed.
     406             :        The routine should assert that PRECISION is acceptable.  */
     407             :   template <typename T> struct int_traits;
     408             : 
     409             :   /* This class provides a single type, result_type, which specifies the
     410             :      type of integer produced by a binary operation whose inputs have
     411             :      types T1 and T2.  The definition should be symmetric.  */
     412             :   template <typename T1, typename T2,
     413             :             enum precision_type P1 = int_traits <T1>::precision_type,
     414             :             enum precision_type P2 = int_traits <T2>::precision_type>
     415             :   struct binary_traits;
     416             : 
     417             :   /* Specify the result type for each supported combination of binary
     418             :      inputs.  Note that CONST_PRECISION and VAR_PRECISION cannot be
     419             :      mixed, in order to give stronger type checking.  When both inputs
     420             :      are CONST_PRECISION, they must have the same precision.  */
     421             :   template <typename T1, typename T2>
     422             :   struct binary_traits <T1, T2, FLEXIBLE_PRECISION, FLEXIBLE_PRECISION>
     423             :   {
     424             :     typedef widest_int result_type;
     425             :     /* Don't define operators for this combination.  */
     426             :   };
     427             : 
     428             :   template <typename T1, typename T2>
     429             :   struct binary_traits <T1, T2, FLEXIBLE_PRECISION, VAR_PRECISION>
     430             :   {
     431             :     typedef wide_int result_type;
     432             :     typedef result_type operator_result;
     433             :     typedef bool predicate_result;
     434             :   };
     435             : 
     436             :   template <typename T1, typename T2>
     437             :   struct binary_traits <T1, T2, FLEXIBLE_PRECISION, CONST_PRECISION>
     438             :   {
     439             :     /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
     440             :        so as not to confuse gengtype.  */
     441             :     typedef generic_wide_int < fixed_wide_int_storage
     442             :                                <int_traits <T2>::precision> > result_type;
     443             :     typedef result_type operator_result;
     444             :     typedef bool predicate_result;
     445             :     typedef result_type signed_shift_result_type;
     446             :     typedef bool signed_predicate_result;
     447             :   };
     448             : 
     449             :   template <typename T1, typename T2>
     450             :   struct binary_traits <T1, T2, VAR_PRECISION, FLEXIBLE_PRECISION>
     451             :   {
     452             :     typedef wide_int result_type;
     453             :     typedef result_type operator_result;
     454             :     typedef bool predicate_result;
     455             :   };
     456             : 
     457             :   template <typename T1, typename T2>
     458             :   struct binary_traits <T1, T2, CONST_PRECISION, FLEXIBLE_PRECISION>
     459             :   {
     460             :     /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
     461             :        so as not to confuse gengtype.  */
     462             :     typedef generic_wide_int < fixed_wide_int_storage
     463             :                                <int_traits <T1>::precision> > result_type;
     464             :     typedef result_type operator_result;
     465             :     typedef bool predicate_result;
     466             :     typedef result_type signed_shift_result_type;
     467             :     typedef bool signed_predicate_result;
     468             :   };
     469             : 
     470             :   template <typename T1, typename T2>
     471             :   struct binary_traits <T1, T2, CONST_PRECISION, CONST_PRECISION>
     472             :   {
     473             :     STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision);
     474             :     /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
     475             :        so as not to confuse gengtype.  */
     476             :     typedef generic_wide_int < fixed_wide_int_storage
     477             :                                <int_traits <T1>::precision> > result_type;
     478             :     typedef result_type operator_result;
     479             :     typedef bool predicate_result;
     480             :     typedef result_type signed_shift_result_type;
     481             :     typedef bool signed_predicate_result;
     482             :   };
     483             : 
     484             :   template <typename T1, typename T2>
     485             :   struct binary_traits <T1, T2, VAR_PRECISION, VAR_PRECISION>
     486             :   {
     487             :     typedef wide_int result_type;
     488             :     typedef result_type operator_result;
     489             :     typedef bool predicate_result;
     490             :   };
     491             : }
     492             : 
     493             : /* Public functions for querying and operating on integers.  */
     494             : namespace wi
     495             : {
     496             :   template <typename T>
     497             :   unsigned int get_precision (const T &);
     498             : 
     499             :   template <typename T1, typename T2>
     500             :   unsigned int get_binary_precision (const T1 &, const T2 &);
     501             : 
     502             :   template <typename T1, typename T2>
     503             :   void copy (T1 &, const T2 &);
     504             : 
     505             : #define UNARY_PREDICATE \
     506             :   template <typename T> bool
     507             : #define UNARY_FUNCTION \
     508             :   template <typename T> WI_UNARY_RESULT (T)
     509             : #define BINARY_PREDICATE \
     510             :   template <typename T1, typename T2> bool
     511             : #define BINARY_FUNCTION \
     512             :   template <typename T1, typename T2> WI_BINARY_RESULT (T1, T2)
     513             : #define SHIFT_FUNCTION \
     514             :   template <typename T1, typename T2> WI_UNARY_RESULT (T1)
     515             : 
     516             :   UNARY_PREDICATE fits_shwi_p (const T &);
     517             :   UNARY_PREDICATE fits_uhwi_p (const T &);
     518             :   UNARY_PREDICATE neg_p (const T &, signop = SIGNED);
     519             : 
     520             :   template <typename T>
     521             :   HOST_WIDE_INT sign_mask (const T &);
     522             : 
     523             :   BINARY_PREDICATE eq_p (const T1 &, const T2 &);
     524             :   BINARY_PREDICATE ne_p (const T1 &, const T2 &);
     525             :   BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop);
     526             :   BINARY_PREDICATE lts_p (const T1 &, const T2 &);
     527             :   BINARY_PREDICATE ltu_p (const T1 &, const T2 &);
     528             :   BINARY_PREDICATE le_p (const T1 &, const T2 &, signop);
     529             :   BINARY_PREDICATE les_p (const T1 &, const T2 &);
     530             :   BINARY_PREDICATE leu_p (const T1 &, const T2 &);
     531             :   BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop);
     532             :   BINARY_PREDICATE gts_p (const T1 &, const T2 &);
     533             :   BINARY_PREDICATE gtu_p (const T1 &, const T2 &);
     534             :   BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop);
     535             :   BINARY_PREDICATE ges_p (const T1 &, const T2 &);
     536             :   BINARY_PREDICATE geu_p (const T1 &, const T2 &);
     537             : 
     538             :   template <typename T1, typename T2>
     539             :   int cmp (const T1 &, const T2 &, signop);
     540             : 
     541             :   template <typename T1, typename T2>
     542             :   int cmps (const T1 &, const T2 &);
     543             : 
     544             :   template <typename T1, typename T2>
     545             :   int cmpu (const T1 &, const T2 &);
     546             : 
     547             :   UNARY_FUNCTION bit_not (const T &);
     548             :   UNARY_FUNCTION neg (const T &);
     549             :   UNARY_FUNCTION neg (const T &, overflow_type *);
     550             :   UNARY_FUNCTION abs (const T &);
     551             :   UNARY_FUNCTION ext (const T &, unsigned int, signop);
     552             :   UNARY_FUNCTION sext (const T &, unsigned int);
     553             :   UNARY_FUNCTION zext (const T &, unsigned int);
     554             :   UNARY_FUNCTION set_bit (const T &, unsigned int);
     555             :   UNARY_FUNCTION bswap (const T &);
     556             :   UNARY_FUNCTION bitreverse (const T &);
     557             : 
     558             :   BINARY_FUNCTION min (const T1 &, const T2 &, signop);
     559             :   BINARY_FUNCTION smin (const T1 &, const T2 &);
     560             :   BINARY_FUNCTION umin (const T1 &, const T2 &);
     561             :   BINARY_FUNCTION max (const T1 &, const T2 &, signop);
     562             :   BINARY_FUNCTION smax (const T1 &, const T2 &);
     563             :   BINARY_FUNCTION umax (const T1 &, const T2 &);
     564             : 
     565             :   BINARY_FUNCTION bit_and (const T1 &, const T2 &);
     566             :   BINARY_FUNCTION bit_and_not (const T1 &, const T2 &);
     567             :   BINARY_FUNCTION bit_or (const T1 &, const T2 &);
     568             :   BINARY_FUNCTION bit_or_not (const T1 &, const T2 &);
     569             :   BINARY_FUNCTION bit_xor (const T1 &, const T2 &);
     570             :   BINARY_FUNCTION add (const T1 &, const T2 &);
     571             :   BINARY_FUNCTION add (const T1 &, const T2 &, signop, overflow_type *);
     572             :   BINARY_FUNCTION sub (const T1 &, const T2 &);
     573             :   BINARY_FUNCTION sub (const T1 &, const T2 &, signop, overflow_type *);
     574             :   BINARY_FUNCTION mul (const T1 &, const T2 &);
     575             :   BINARY_FUNCTION mul (const T1 &, const T2 &, signop, overflow_type *);
     576             :   BINARY_FUNCTION smul (const T1 &, const T2 &, overflow_type *);
     577             :   BINARY_FUNCTION umul (const T1 &, const T2 &, overflow_type *);
     578             :   BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop);
     579             :   BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop,
     580             :                              overflow_type * = 0);
     581             :   BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &);
     582             :   BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &);
     583             :   BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop,
     584             :                              overflow_type * = 0);
     585             :   BINARY_FUNCTION udiv_floor (const T1 &, const T2 &);
     586             :   BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &);
     587             :   BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop,
     588             :                             overflow_type * = 0);
     589             :   BINARY_FUNCTION udiv_ceil (const T1 &, const T2 &);
     590             :   BINARY_FUNCTION div_round (const T1 &, const T2 &, signop,
     591             :                              overflow_type * = 0);
     592             :   BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop,
     593             :                                 WI_BINARY_RESULT (T1, T2) *);
     594             :   BINARY_FUNCTION gcd (const T1 &, const T2 &, signop = UNSIGNED);
     595             :   BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop,
     596             :                              overflow_type * = 0);
     597             :   BINARY_FUNCTION smod_trunc (const T1 &, const T2 &);
     598             :   BINARY_FUNCTION umod_trunc (const T1 &, const T2 &);
     599             :   BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop,
     600             :                              overflow_type * = 0);
     601             :   BINARY_FUNCTION umod_floor (const T1 &, const T2 &);
     602             :   BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop,
     603             :                             overflow_type * = 0);
     604             :   BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop,
     605             :                              overflow_type * = 0);
     606             : 
     607             :   template <typename T1, typename T2>
     608             :   bool multiple_of_p (const T1 &, const T2 &, signop);
     609             : 
     610             :   template <typename T1, typename T2>
     611             :   bool multiple_of_p (const T1 &, const T2 &, signop,
     612             :                       WI_BINARY_RESULT (T1, T2) *);
     613             : 
     614             :   SHIFT_FUNCTION lshift (const T1 &, const T2 &);
     615             :   SHIFT_FUNCTION lrshift (const T1 &, const T2 &);
     616             :   SHIFT_FUNCTION arshift (const T1 &, const T2 &);
     617             :   SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn);
     618             :   SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0);
     619             :   SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0);
     620             : 
     621             : #undef SHIFT_FUNCTION
     622             : #undef BINARY_PREDICATE
     623             : #undef BINARY_FUNCTION
     624             : #undef UNARY_PREDICATE
     625             : #undef UNARY_FUNCTION
     626             : 
     627             :   bool only_sign_bit_p (const wide_int_ref &, unsigned int);
     628             :   bool only_sign_bit_p (const wide_int_ref &);
     629             :   int clz (const wide_int_ref &);
     630             :   int clrsb (const wide_int_ref &);
     631             :   int ctz (const wide_int_ref &);
     632             :   int exact_log2 (const wide_int_ref &);
     633             :   int floor_log2 (const wide_int_ref &);
     634             :   int ffs (const wide_int_ref &);
     635             :   int popcount (const wide_int_ref &);
     636             :   int parity (const wide_int_ref &);
     637             : 
     638             :   template <typename T>
     639             :   unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int);
     640             : 
     641             :   template <typename T>
     642             :   unsigned int min_precision (const T &, signop);
     643             : 
     644             :   static inline void accumulate_overflow (overflow_type &, overflow_type);
     645             : }
     646             : 
     647             : namespace wi
     648             : {
     649             :   /* Contains the components of a decomposed integer for easy, direct
     650             :      access.  */
     651             :   class storage_ref
     652             :   {
     653             :   public:
     654             :     storage_ref () {}
     655             :     storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int);
     656             : 
     657             :     const HOST_WIDE_INT *val;
     658             :     unsigned int len;
     659             :     unsigned int precision;
     660             : 
     661             :     /* Provide enough trappings for this class to act as storage for
     662             :        generic_wide_int.  */
     663             :     unsigned int get_len () const;
     664             :     unsigned int get_precision () const;
     665             :     const HOST_WIDE_INT *get_val () const;
     666             :   };
     667             : }
     668             : 
     669  6903470941 : inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in,
     670             :                                       unsigned int len_in,
     671             :                                       unsigned int precision_in)
     672             :   : val (val_in), len (len_in), precision (precision_in)
     673             : {
     674             : }
     675             : 
     676             : inline unsigned int
     677   670827303 : wi::storage_ref::get_len () const
     678             : {
     679   670827303 :   return len;
     680             : }
     681             : 
     682             : inline unsigned int
     683  1162864854 : wi::storage_ref::get_precision () const
     684             : {
     685  1162864854 :   return precision;
     686             : }
     687             : 
     688             : inline const HOST_WIDE_INT *
     689  1620733244 : wi::storage_ref::get_val () const
     690             : {
     691  1620733244 :   return val;
     692             : }
     693             : 
     694             : /* This class defines an integer type using the storage provided by the
     695             :    template argument.  The storage class must provide the following
     696             :    functions:
     697             : 
     698             :    unsigned int get_precision () const
     699             :      Return the number of bits in the integer.
     700             : 
     701             :    HOST_WIDE_INT *get_val () const
     702             :      Return a pointer to the array of blocks that encodes the integer.
     703             : 
     704             :    unsigned int get_len () const
     705             :      Return the number of blocks in get_val ().  If this is smaller
     706             :      than the number of blocks implied by get_precision (), the
     707             :      remaining blocks are sign extensions of block get_len () - 1.
     708             : 
     709             :    Although not required by generic_wide_int itself, writable storage
     710             :    classes can also provide the following functions:
     711             : 
     712             :    HOST_WIDE_INT *write_val ()
     713             :      Get a modifiable version of get_val ()
     714             : 
     715             :    unsigned int set_len (unsigned int len)
     716             :      Set the value returned by get_len () to LEN.  */
     717             : template <typename storage>
     718             : class GTY(()) generic_wide_int : public storage
     719             : {
     720             : public:
     721             :   generic_wide_int ();
     722             : 
     723             :   template <typename T>
     724             :   generic_wide_int (const T &);
     725             : 
     726             :   template <typename T>
     727             :   generic_wide_int (const T &, unsigned int);
     728             : 
     729             :   /* Conversions.  */
     730             :   HOST_WIDE_INT to_shwi (unsigned int) const;
     731             :   HOST_WIDE_INT to_shwi () const;
     732             :   unsigned HOST_WIDE_INT to_uhwi (unsigned int) const;
     733             :   unsigned HOST_WIDE_INT to_uhwi () const;
     734             :   HOST_WIDE_INT to_short_addr () const;
     735             : 
     736             :   /* Public accessors for the interior of a wide int.  */
     737             :   HOST_WIDE_INT sign_mask () const;
     738             :   HOST_WIDE_INT elt (unsigned int) const;
     739             :   HOST_WIDE_INT sext_elt (unsigned int) const;
     740             :   unsigned HOST_WIDE_INT ulow () const;
     741             :   unsigned HOST_WIDE_INT uhigh () const;
     742             :   HOST_WIDE_INT slow () const;
     743             :   HOST_WIDE_INT shigh () const;
     744             : 
     745             :   template <typename T>
     746             :   generic_wide_int &operator = (const T &);
     747             : 
     748             : #define ASSIGNMENT_OPERATOR(OP, F) \
     749             :   template <typename T> \
     750             :     generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); }
     751             : 
     752             : /* Restrict these to cases where the shift operator is defined.  */
     753             : #define SHIFT_ASSIGNMENT_OPERATOR(OP, OP2) \
     754             :   template <typename T> \
     755             :     generic_wide_int &OP (const T &c) { return (*this = *this OP2 c); }
     756             : 
     757             : #define INCDEC_OPERATOR(OP, DELTA) \
     758             :   generic_wide_int &OP () { *this += DELTA; return *this; }
     759             : 
     760             :   ASSIGNMENT_OPERATOR (operator &=, bit_and)
     761             :   ASSIGNMENT_OPERATOR (operator |=, bit_or)
     762             :   ASSIGNMENT_OPERATOR (operator ^=, bit_xor)
     763          65 :   ASSIGNMENT_OPERATOR (operator +=, add)
     764       56507 :   ASSIGNMENT_OPERATOR (operator -=, sub)
     765             :   ASSIGNMENT_OPERATOR (operator *=, mul)
     766             :   ASSIGNMENT_OPERATOR (operator <<=, lshift)
     767             :   SHIFT_ASSIGNMENT_OPERATOR (operator >>=, >>)
     768             :   INCDEC_OPERATOR (operator ++, 1)
     769             :   INCDEC_OPERATOR (operator --, -1)
     770             : 
     771             : #undef SHIFT_ASSIGNMENT_OPERATOR
     772             : #undef ASSIGNMENT_OPERATOR
     773             : #undef INCDEC_OPERATOR
     774             : 
     775             :   /* Debugging functions.  */
     776             :   void dump () const;
     777             : 
     778             :   static const bool is_sign_extended
     779             :     = wi::int_traits <generic_wide_int <storage> >::is_sign_extended;
     780             : };
     781             : 
     782             : template <typename storage>
     783   987457415 : inline generic_wide_int <storage>::generic_wide_int () {}
     784             : 
     785             : template <typename storage>
     786             : template <typename T>
     787  5490359108 : inline generic_wide_int <storage>::generic_wide_int (const T &x)
     788   350303282 :   : storage (x)
     789             : {
     790    31760110 : }
     791             : 
     792             : template <typename storage>
     793             : template <typename T>
     794  2040006488 : inline generic_wide_int <storage>::generic_wide_int (const T &x,
     795             :                                                      unsigned int precision)
     796  2876095203 :   : storage (x, precision)
     797             : {
     798             : }
     799             : 
     800             : /* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION.
     801             :    If THIS does not fit in PRECISION, the information is lost.  */
     802             : template <typename storage>
     803             : inline HOST_WIDE_INT
     804             : generic_wide_int <storage>::to_shwi (unsigned int precision) const
     805             : {
     806             :   if (precision < HOST_BITS_PER_WIDE_INT)
     807             :     return sext_hwi (this->get_val ()[0], precision);
     808             :   else
     809             :     return this->get_val ()[0];
     810             : }
     811             : 
     812             : /* Return THIS as a signed HOST_WIDE_INT, in its natural precision.  */
     813             : template <typename storage>
     814             : inline HOST_WIDE_INT
     815   389371989 : generic_wide_int <storage>::to_shwi () const
     816             : {
     817             :   if (is_sign_extended)
     818   358836268 :     return this->get_val ()[0];
     819             :   else
     820             :     return to_shwi (this->get_precision ());
     821             : }
     822             : 
     823             : /* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from
     824             :    PRECISION.  If THIS does not fit in PRECISION, the information
     825             :    is lost.  */
     826             : template <typename storage>
     827             : inline unsigned HOST_WIDE_INT
     828   528105314 : generic_wide_int <storage>::to_uhwi (unsigned int precision) const
     829             : {
     830   495754380 :   if (precision < HOST_BITS_PER_WIDE_INT)
     831   485045539 :     return zext_hwi (this->get_val ()[0], precision);
     832             :   else
     833    43059775 :     return this->get_val ()[0];
     834             : }
     835             : 
     836             : /* Return THIS as an signed HOST_WIDE_INT, in its natural precision.  */
     837             : template <typename storage>
     838             : inline unsigned HOST_WIDE_INT
     839   528105314 : generic_wide_int <storage>::to_uhwi () const
     840             : {
     841   522754687 :   return to_uhwi (this->get_precision ());
     842             : }
     843             : 
     844             : /* TODO: The compiler is half converted from using HOST_WIDE_INT to
     845             :    represent addresses to using offset_int to represent addresses.
     846             :    We use to_short_addr at the interface from new code to old,
     847             :    unconverted code.  */
     848             : template <typename storage>
     849             : inline HOST_WIDE_INT
     850             : generic_wide_int <storage>::to_short_addr () const
     851             : {
     852             :   return this->get_val ()[0];
     853             : }
     854             : 
     855             : /* Return the implicit value of blocks above get_len ().  */
     856             : template <typename storage>
     857             : inline HOST_WIDE_INT
     858    50451414 : generic_wide_int <storage>::sign_mask () const
     859             : {
     860    50451414 :   unsigned int len = this->get_len ();
     861    50451414 :   gcc_assert (len > 0);
     862             : 
     863    50451414 :   unsigned HOST_WIDE_INT high = this->get_val ()[len - 1];
     864             :   if (!is_sign_extended)
     865             :     {
     866         151 :       unsigned int precision = this->get_precision ();
     867         151 :       int excess = len * HOST_BITS_PER_WIDE_INT - precision;
     868         151 :       if (excess > 0)
     869         151 :         high <<= excess;
     870             :     }
     871    50451414 :   return (HOST_WIDE_INT) (high) < 0 ? -1 : 0;
     872             : }
     873             : 
     874             : /* Return the signed value of the least-significant explicitly-encoded
     875             :    block.  */
     876             : template <typename storage>
     877             : inline HOST_WIDE_INT
     878    32128628 : generic_wide_int <storage>::slow () const
     879             : {
     880    32128628 :   return this->get_val ()[0];
     881             : }
     882             : 
     883             : /* Return the signed value of the most-significant explicitly-encoded
     884             :    block.  */
     885             : template <typename storage>
     886             : inline HOST_WIDE_INT
     887             : generic_wide_int <storage>::shigh () const
     888             : {
     889             :   return this->get_val ()[this->get_len () - 1];
     890             : }
     891             : 
     892             : /* Return the unsigned value of the least-significant
     893             :    explicitly-encoded block.  */
     894             : template <typename storage>
     895             : inline unsigned HOST_WIDE_INT
     896    32621020 : generic_wide_int <storage>::ulow () const
     897             : {
     898    32621020 :   return this->get_val ()[0];
     899             : }
     900             : 
     901             : /* Return the unsigned value of the most-significant
     902             :    explicitly-encoded block.  */
     903             : template <typename storage>
     904             : inline unsigned HOST_WIDE_INT
     905       30520 : generic_wide_int <storage>::uhigh () const
     906             : {
     907       30520 :   return this->get_val ()[this->get_len () - 1];
     908             : }
     909             : 
     910             : /* Return block I, which might be implicitly or explicit encoded.  */
     911             : template <typename storage>
     912             : inline HOST_WIDE_INT
     913             : generic_wide_int <storage>::elt (unsigned int i) const
     914             : {
     915             :   if (i >= this->get_len ())
     916             :     return sign_mask ();
     917             :   else
     918             :     return this->get_val ()[i];
     919             : }
     920             : 
     921             : /* Like elt, but sign-extend beyond the upper bit, instead of returning
     922             :    the raw encoding.  */
     923             : template <typename storage>
     924             : inline HOST_WIDE_INT
     925             : generic_wide_int <storage>::sext_elt (unsigned int i) const
     926             : {
     927             :   HOST_WIDE_INT elt_i = elt (i);
     928             :   if (!is_sign_extended)
     929             :     {
     930             :       unsigned int precision = this->get_precision ();
     931             :       unsigned int lsb = i * HOST_BITS_PER_WIDE_INT;
     932             :       if (precision - lsb < HOST_BITS_PER_WIDE_INT)
     933             :         elt_i = sext_hwi (elt_i, precision - lsb);
     934             :     }
     935             :   return elt_i;
     936             : }
     937             : 
     938             : template <typename storage>
     939             : template <typename T>
     940             : inline generic_wide_int <storage> &
     941        3112 : generic_wide_int <storage>::operator = (const T &x)
     942             : {
     943        3112 :   storage::operator = (x);
     944        3112 :   return *this;
     945             : }
     946             : 
     947             : /* Dump the contents of the integer to stderr, for debugging.  */
     948             : template <typename storage>
     949             : void
     950             : generic_wide_int <storage>::dump () const
     951             : {
     952             :   unsigned int len = this->get_len ();
     953             :   const HOST_WIDE_INT *val = this->get_val ();
     954             :   unsigned int precision = this->get_precision ();
     955             :   fprintf (stderr, "[");
     956             :   if (len * HOST_BITS_PER_WIDE_INT < precision)
     957             :     fprintf (stderr, "...,");
     958             :   for (unsigned int i = 0; i < len - 1; ++i)
     959             :     fprintf (stderr, HOST_WIDE_INT_PRINT_HEX ",", val[len - 1 - i]);
     960             :   fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "], precision = %d\n",
     961             :            val[0], precision);
     962             : }
     963             : 
     964             : namespace wi
     965             : {
     966             :   template <typename storage>
     967             :   struct int_traits < generic_wide_int <storage> >
     968             :     : public wi::int_traits <storage>
     969             :   {
     970             :     static unsigned int get_precision (const generic_wide_int <storage> &);
     971             :     static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
     972             :                                       const generic_wide_int <storage> &);
     973             :   };
     974             : }
     975             : 
     976             : template <typename storage>
     977             : inline unsigned int
     978   385168342 : wi::int_traits < generic_wide_int <storage> >::
     979             : get_precision (const generic_wide_int <storage> &x)
     980             : {
     981   643812252 :   return x.get_precision ();
     982             : }
     983             : 
     984             : template <typename storage>
     985             : inline wi::storage_ref
     986  1722824353 : wi::int_traits < generic_wide_int <storage> >::
     987             : decompose (HOST_WIDE_INT *, unsigned int precision,
     988             :            const generic_wide_int <storage> &x)
     989             : {
     990  1722824353 :   gcc_checking_assert (precision == x.get_precision ());
     991  1722824353 :   return wi::storage_ref (x.get_val (), x.get_len (), precision);
     992             : }
     993             : 
     994             : /* Provide the storage for a wide_int_ref.  This acts like a read-only
     995             :    wide_int, with the optimization that VAL is normally a pointer to
     996             :    another integer's storage, so that no array copy is needed.  */
     997             : template <bool SE, bool HDP>
     998             : class wide_int_ref_storage : public wi::storage_ref
     999             : {
    1000             : private:
    1001             :   /* Scratch space that can be used when decomposing the original integer.
    1002             :      It must live as long as this object.  */
    1003             :   HOST_WIDE_INT scratch[2];
    1004             : 
    1005             : public:
    1006             :   wide_int_ref_storage () {}
    1007             : 
    1008             :   wide_int_ref_storage (const wi::storage_ref &);
    1009             : 
    1010             :   template <typename T>
    1011             :   wide_int_ref_storage (const T &);
    1012             : 
    1013             :   template <typename T>
    1014             :   wide_int_ref_storage (const T &, unsigned int);
    1015             : };
    1016             : 
    1017             : /* Create a reference from an existing reference.  */
    1018             : template <bool SE, bool HDP>
    1019  4690865203 : inline wide_int_ref_storage <SE, HDP>::
    1020             : wide_int_ref_storage (const wi::storage_ref &x)
    1021  4690865203 :   : storage_ref (x)
    1022             : {}
    1023             : 
    1024             : /* Create a reference to integer X in its natural precision.  Note
    1025             :    that the natural precision is host-dependent for primitive
    1026             :    types.  */
    1027             : template <bool SE, bool HDP>
    1028             : template <typename T>
    1029   175517399 : inline wide_int_ref_storage <SE, HDP>::wide_int_ref_storage (const T &x)
    1030   175517399 :   : storage_ref (wi::int_traits <T>::decompose (scratch,
    1031             :                                                 wi::get_precision (x), x))
    1032             : {
    1033             : }
    1034             : 
    1035             : /* Create a reference to integer X in precision PRECISION.  */
    1036             : template <bool SE, bool HDP>
    1037             : template <typename T>
    1038  2040006488 : inline wide_int_ref_storage <SE, HDP>::
    1039             : wide_int_ref_storage (const T &x, unsigned int precision)
    1040  2043283484 :   : storage_ref (wi::int_traits <T>::decompose (scratch, precision, x))
    1041             : {
    1042             : }
    1043             : 
    1044             : namespace wi
    1045             : {
    1046             :   template <bool SE, bool HDP>
    1047             :   struct int_traits <wide_int_ref_storage <SE, HDP> >
    1048             :   {
    1049             :     static const enum precision_type precision_type = VAR_PRECISION;
    1050             :     static const bool host_dependent_precision = HDP;
    1051             :     static const bool is_sign_extended = SE;
    1052             :   };
    1053             : }
    1054             : 
    1055             : namespace wi
    1056             : {
    1057             :   unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1058             :                               unsigned int, unsigned int, unsigned int,
    1059             :                               signop sgn);
    1060             :   unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1061             :                            unsigned int, unsigned int, bool = true);
    1062             : }
    1063             : 
    1064             : /* The storage used by wide_int.  */
    1065             : class GTY(()) wide_int_storage
    1066             : {
    1067             : private:
    1068             :   HOST_WIDE_INT val[WIDE_INT_MAX_ELTS];
    1069             :   unsigned int len;
    1070             :   unsigned int precision;
    1071             : 
    1072             : public:
    1073             :   wide_int_storage ();
    1074             :   template <typename T>
    1075             :   wide_int_storage (const T &);
    1076             : 
    1077             :   /* The standard generic_wide_int storage methods.  */
    1078             :   unsigned int get_precision () const;
    1079             :   const HOST_WIDE_INT *get_val () const;
    1080             :   unsigned int get_len () const;
    1081             :   HOST_WIDE_INT *write_val ();
    1082             :   void set_len (unsigned int, bool = false);
    1083             : 
    1084             :   template <typename T>
    1085             :   wide_int_storage &operator = (const T &);
    1086             : 
    1087             :   static wide_int from (const wide_int_ref &, unsigned int, signop);
    1088             :   static wide_int from_array (const HOST_WIDE_INT *, unsigned int,
    1089             :                               unsigned int, bool = true);
    1090             :   static wide_int create (unsigned int);
    1091             : };
    1092             : 
    1093             : namespace wi
    1094             : {
    1095             :   template <>
    1096             :   struct int_traits <wide_int_storage>
    1097             :   {
    1098             :     static const enum precision_type precision_type = VAR_PRECISION;
    1099             :     /* Guaranteed by a static assert in the wide_int_storage constructor.  */
    1100             :     static const bool host_dependent_precision = false;
    1101             :     static const bool is_sign_extended = true;
    1102             :     template <typename T1, typename T2>
    1103             :     static wide_int get_binary_result (const T1 &, const T2 &);
    1104             :   };
    1105             : }
    1106             : 
    1107   385103761 : inline wide_int_storage::wide_int_storage () {}
    1108             : 
    1109             : /* Initialize the storage from integer X, in its natural precision.
    1110             :    Note that we do not allow integers with host-dependent precision
    1111             :    to become wide_ints; wide_ints must always be logically independent
    1112             :    of the host.  */
    1113             : template <typename T>
    1114             : inline wide_int_storage::wide_int_storage (const T &x)
    1115             : {
    1116             :   { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
    1117             :   { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
    1118             :   WIDE_INT_REF_FOR (T) xi (x);
    1119             :   precision = xi.precision;
    1120             :   wi::copy (*this, xi);
    1121             : }
    1122             : 
    1123             : template <typename T>
    1124             : inline wide_int_storage&
    1125             : wide_int_storage::operator = (const T &x)
    1126             : {
    1127             :   { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
    1128             :   { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
    1129             :   WIDE_INT_REF_FOR (T) xi (x);
    1130             :   precision = xi.precision;
    1131             :   wi::copy (*this, xi);
    1132             :   return *this;
    1133             : }
    1134             : 
    1135             : inline unsigned int
    1136             : wide_int_storage::get_precision () const
    1137             : {
    1138             :   return precision;
    1139             : }
    1140             : 
    1141             : inline const HOST_WIDE_INT *
    1142             : wide_int_storage::get_val () const
    1143             : {
    1144             :   return val;
    1145             : }
    1146             : 
    1147             : inline unsigned int
    1148             : wide_int_storage::get_len () const
    1149             : {
    1150             :   return len;
    1151             : }
    1152             : 
    1153             : inline HOST_WIDE_INT *
    1154             : wide_int_storage::write_val ()
    1155             : {
    1156             :   return val;
    1157             : }
    1158             : 
    1159             : inline void
    1160             : wide_int_storage::set_len (unsigned int l, bool is_sign_extended)
    1161             : {
    1162             :   len = l;
    1163             :   if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision)
    1164             :     val[len - 1] = sext_hwi (val[len - 1],
    1165             :                              precision % HOST_BITS_PER_WIDE_INT);
    1166             : }
    1167             : 
    1168             : /* Treat X as having signedness SGN and convert it to a PRECISION-bit
    1169             :    number.  */
    1170             : inline wide_int
    1171             : wide_int_storage::from (const wide_int_ref &x, unsigned int precision,
    1172             :                         signop sgn)
    1173             : {
    1174             :   wide_int result = wide_int::create (precision);
    1175             :   result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
    1176             :                                      x.precision, precision, sgn));
    1177             :   return result;
    1178             : }
    1179             : 
    1180             : /* Create a wide_int from the explicit block encoding given by VAL and
    1181             :    LEN.  PRECISION is the precision of the integer.  NEED_CANON_P is
    1182             :    true if the encoding may have redundant trailing blocks.  */
    1183             : inline wide_int
    1184             : wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len,
    1185             :                               unsigned int precision, bool need_canon_p)
    1186             : {
    1187             :   wide_int result = wide_int::create (precision);
    1188             :   result.set_len (wi::from_array (result.write_val (), val, len, precision,
    1189             :                                   need_canon_p));
    1190             :   return result;
    1191             : }
    1192             : 
    1193             : /* Return an uninitialized wide_int with precision PRECISION.  */
    1194             : inline wide_int
    1195   385103761 : wide_int_storage::create (unsigned int precision)
    1196             : {
    1197   385103761 :   wide_int x;
    1198   385103761 :   x.precision = precision;
    1199   385103761 :   return x;
    1200             : }
    1201             : 
    1202             : template <typename T1, typename T2>
    1203             : inline wide_int
    1204   385103761 : wi::int_traits <wide_int_storage>::get_binary_result (const T1 &x, const T2 &y)
    1205             : {
    1206             :   /* This shouldn't be used for two flexible-precision inputs.  */
    1207             :   STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION
    1208             :                  || wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION);
    1209             :   if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION)
    1210             :     return wide_int::create (wi::get_precision (y));
    1211             :   else
    1212   385103761 :     return wide_int::create (wi::get_precision (x));
    1213             : }
    1214             : 
    1215             : /* The storage used by FIXED_WIDE_INT (N).  */
    1216             : template <int N>
    1217             : class GTY(()) fixed_wide_int_storage
    1218             : {
    1219             : private:
    1220             :   HOST_WIDE_INT val[WIDE_INT_MAX_HWIS (N)];
    1221             :   unsigned int len;
    1222             : 
    1223             : public:
    1224             :   fixed_wide_int_storage ();
    1225             :   template <typename T>
    1226             :   fixed_wide_int_storage (const T &);
    1227             : 
    1228             :   /* The standard generic_wide_int storage methods.  */
    1229             :   unsigned int get_precision () const;
    1230             :   const HOST_WIDE_INT *get_val () const;
    1231             :   unsigned int get_len () const;
    1232             :   HOST_WIDE_INT *write_val ();
    1233             :   void set_len (unsigned int, bool = false);
    1234             : 
    1235             :   static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop);
    1236             :   static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int,
    1237             :                                         bool = true);
    1238             : };
    1239             : 
    1240             : namespace wi
    1241             : {
    1242             :   template <int N>
    1243             :   struct int_traits < fixed_wide_int_storage <N> >
    1244             :   {
    1245             :     static const enum precision_type precision_type = CONST_PRECISION;
    1246             :     static const bool host_dependent_precision = false;
    1247             :     static const bool is_sign_extended = true;
    1248             :     static const unsigned int precision = N;
    1249             :     template <typename T1, typename T2>
    1250             :     static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &);
    1251             :   };
    1252             : }
    1253             : 
    1254             : template <int N>
    1255   462516449 : inline fixed_wide_int_storage <N>::fixed_wide_int_storage () {}
    1256             : 
    1257             : /* Initialize the storage from integer X, in precision N.  */
    1258             : template <int N>
    1259             : template <typename T>
    1260   235207547 : inline fixed_wide_int_storage <N>::fixed_wide_int_storage (const T &x)
    1261             : {
    1262             :   /* Check for type compatibility.  We don't want to initialize a
    1263             :      fixed-width integer from something like a wide_int.  */
    1264             :   WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED;
    1265   235419830 :   wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N));
    1266   235207547 : }
    1267             : 
    1268             : template <int N>
    1269             : inline unsigned int
    1270             : fixed_wide_int_storage <N>::get_precision () const
    1271             : {
    1272             :   return N;
    1273             : }
    1274             : 
    1275             : template <int N>
    1276             : inline const HOST_WIDE_INT *
    1277   291914148 : fixed_wide_int_storage <N>::get_val () const
    1278             : {
    1279   291914148 :   return val;
    1280             : }
    1281             : 
    1282             : template <int N>
    1283             : inline unsigned int
    1284   291914148 : fixed_wide_int_storage <N>::get_len () const
    1285             : {
    1286   291914148 :   return len;
    1287             : }
    1288             : 
    1289             : template <int N>
    1290             : inline HOST_WIDE_INT *
    1291   421682823 : fixed_wide_int_storage <N>::write_val ()
    1292             : {
    1293   235207547 :   return val;
    1294             : }
    1295             : 
    1296             : template <int N>
    1297             : inline void
    1298   421682823 : fixed_wide_int_storage <N>::set_len (unsigned int l, bool)
    1299             : {
    1300   421682823 :   len = l;
    1301             :   /* There are no excess bits in val[len - 1].  */
    1302             :   STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0);
    1303   182440014 : }
    1304             : 
    1305             : /* Treat X as having signedness SGN and convert it to an N-bit number.  */
    1306             : template <int N>
    1307             : inline FIXED_WIDE_INT (N)
    1308             : fixed_wide_int_storage <N>::from (const wide_int_ref &x, signop sgn)
    1309             : {
    1310             :   FIXED_WIDE_INT (N) result;
    1311             :   result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
    1312             :                                      x.precision, N, sgn));
    1313             :   return result;
    1314             : }
    1315             : 
    1316             : /* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by
    1317             :    VAL and LEN.  NEED_CANON_P is true if the encoding may have redundant
    1318             :    trailing blocks.  */
    1319             : template <int N>
    1320             : inline FIXED_WIDE_INT (N)
    1321             : fixed_wide_int_storage <N>::from_array (const HOST_WIDE_INT *val,
    1322             :                                         unsigned int len,
    1323             :                                         bool need_canon_p)
    1324             : {
    1325             :   FIXED_WIDE_INT (N) result;
    1326             :   result.set_len (wi::from_array (result.write_val (), val, len,
    1327             :                                   N, need_canon_p));
    1328             :   return result;
    1329             : }
    1330             : 
    1331             : template <int N>
    1332             : template <typename T1, typename T2>
    1333             : inline FIXED_WIDE_INT (N)
    1334   602025304 : wi::int_traits < fixed_wide_int_storage <N> >::
    1335             : get_binary_result (const T1 &, const T2 &)
    1336             : {
    1337   186418769 :   return FIXED_WIDE_INT (N) ();
    1338             : }
    1339             : 
    1340             : /* A reference to one element of a trailing_wide_ints structure.  */
    1341             : class trailing_wide_int_storage
    1342             : {
    1343             : private:
    1344             :   /* The precision of the integer, which is a fixed property of the
    1345             :      parent trailing_wide_ints.  */
    1346             :   unsigned int m_precision;
    1347             : 
    1348             :   /* A pointer to the length field.  */
    1349             :   unsigned char *m_len;
    1350             : 
    1351             :   /* A pointer to the HWI array.  There are enough elements to hold all
    1352             :      values of precision M_PRECISION.  */
    1353             :   HOST_WIDE_INT *m_val;
    1354             : 
    1355             : public:
    1356             :   trailing_wide_int_storage (unsigned int, unsigned char *, HOST_WIDE_INT *);
    1357             : 
    1358             :   /* The standard generic_wide_int storage methods.  */
    1359             :   unsigned int get_len () const;
    1360             :   unsigned int get_precision () const;
    1361             :   const HOST_WIDE_INT *get_val () const;
    1362             :   HOST_WIDE_INT *write_val ();
    1363             :   void set_len (unsigned int, bool = false);
    1364             : 
    1365             :   template <typename T>
    1366             :   trailing_wide_int_storage &operator = (const T &);
    1367             : };
    1368             : 
    1369             : typedef generic_wide_int <trailing_wide_int_storage> trailing_wide_int;
    1370             : 
    1371             : /* trailing_wide_int behaves like a wide_int.  */
    1372             : namespace wi
    1373             : {
    1374             :   template <>
    1375             :   struct int_traits <trailing_wide_int_storage>
    1376             :     : public int_traits <wide_int_storage> {};
    1377             : }
    1378             : 
    1379             : /* A variable-length array of wide_int-like objects that can be put
    1380             :    at the end of a variable-sized structure.  The number of objects is
    1381             :    at most N and can be set at runtime by using set_precision().
    1382             : 
    1383             :    Use extra_size to calculate how many bytes beyond the
    1384             :    sizeof need to be allocated.  Use set_precision to initialize the
    1385             :    structure.  */
    1386             : template <int N>
    1387             : struct GTY((user)) trailing_wide_ints
    1388             : {
    1389             : private:
    1390             :   /* The shared precision of each number.  */
    1391             :   unsigned short m_precision;
    1392             : 
    1393             :   /* The shared maximum length of each number.  */
    1394             :   unsigned char m_max_len;
    1395             : 
    1396             :   /* The number of elements.  */
    1397             :   unsigned char m_num_elements;
    1398             : 
    1399             :   /* The current length of each number.
    1400             :      Avoid char array so the whole structure is not a typeless storage
    1401             :      that will, in turn, turn off TBAA on gimple, trees and RTL.  */
    1402             :   struct {unsigned char len;} m_len[N];
    1403             : 
    1404             :   /* The variable-length part of the structure, which always contains
    1405             :      at least one HWI.  Element I starts at index I * M_MAX_LEN.  */
    1406             :   HOST_WIDE_INT m_val[1];
    1407             : 
    1408             : public:
    1409             :   typedef WIDE_INT_REF_FOR (trailing_wide_int_storage) const_reference;
    1410             : 
    1411             :   void set_precision (unsigned int precision, unsigned int num_elements = N);
    1412             :   unsigned int get_precision () const { return m_precision; }
    1413             :   unsigned int num_elements () const { return m_num_elements; }
    1414             :   trailing_wide_int operator [] (unsigned int);
    1415             :   const_reference operator [] (unsigned int) const;
    1416             :   static size_t extra_size (unsigned int precision,
    1417             :                             unsigned int num_elements = N);
    1418             :   size_t extra_size () const { return extra_size (m_precision,
    1419             :                                                   m_num_elements); }
    1420             : };
    1421             : 
    1422             : inline trailing_wide_int_storage::
    1423             : trailing_wide_int_storage (unsigned int precision, unsigned char *len,
    1424             :                            HOST_WIDE_INT *val)
    1425             :   : m_precision (precision), m_len (len), m_val (val)
    1426             : {
    1427             : }
    1428             : 
    1429             : inline unsigned int
    1430             : trailing_wide_int_storage::get_len () const
    1431             : {
    1432             :   return *m_len;
    1433             : }
    1434             : 
    1435             : inline unsigned int
    1436             : trailing_wide_int_storage::get_precision () const
    1437             : {
    1438             :   return m_precision;
    1439             : }
    1440             : 
    1441             : inline const HOST_WIDE_INT *
    1442             : trailing_wide_int_storage::get_val () const
    1443             : {
    1444             :   return m_val;
    1445             : }
    1446             : 
    1447             : inline HOST_WIDE_INT *
    1448             : trailing_wide_int_storage::write_val ()
    1449             : {
    1450             :   return m_val;
    1451             : }
    1452             : 
    1453             : inline void
    1454             : trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended)
    1455             : {
    1456             :   *m_len = len;
    1457             :   if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision)
    1458             :     m_val[len - 1] = sext_hwi (m_val[len - 1],
    1459             :                                m_precision % HOST_BITS_PER_WIDE_INT);
    1460             : }
    1461             : 
    1462             : template <typename T>
    1463             : inline trailing_wide_int_storage &
    1464             : trailing_wide_int_storage::operator = (const T &x)
    1465             : {
    1466             :   WIDE_INT_REF_FOR (T) xi (x, m_precision);
    1467             :   wi::copy (*this, xi);
    1468             :   return *this;
    1469             : }
    1470             : 
    1471             : /* Initialize the structure and record that all elements have precision
    1472             :    PRECISION.  NUM_ELEMENTS can be no more than N.  */
    1473             : template <int N>
    1474             : inline void
    1475             : trailing_wide_ints <N>::set_precision (unsigned int precision,
    1476             :                                        unsigned int num_elements)
    1477             : {
    1478             :   gcc_checking_assert (num_elements <= N);
    1479             :   m_num_elements = num_elements;
    1480             :   m_precision = precision;
    1481             :   m_max_len = WIDE_INT_MAX_HWIS (precision);
    1482             : }
    1483             : 
    1484             : /* Return a reference to element INDEX.  */
    1485             : template <int N>
    1486             : inline trailing_wide_int
    1487             : trailing_wide_ints <N>::operator [] (unsigned int index)
    1488             : {
    1489             :   return trailing_wide_int_storage (m_precision, &m_len[index].len,
    1490             :                                     &m_val[index * m_max_len]);
    1491             : }
    1492             : 
    1493             : template <int N>
    1494             : inline typename trailing_wide_ints <N>::const_reference
    1495             : trailing_wide_ints <N>::operator [] (unsigned int index) const
    1496             : {
    1497             :   return wi::storage_ref (&m_val[index * m_max_len],
    1498             :                           m_len[index].len, m_precision);
    1499             : }
    1500             : 
    1501             : /* Return how many extra bytes need to be added to the end of the
    1502             :    structure in order to handle NUM_ELEMENTS wide_ints of precision
    1503             :    PRECISION.  NUM_ELEMENTS is the number of elements, and defaults
    1504             :    to N.  */
    1505             : template <int N>
    1506             : inline size_t
    1507             : trailing_wide_ints <N>::extra_size (unsigned int precision,
    1508             :                                     unsigned int num_elements)
    1509             : {
    1510             :   unsigned int max_len = WIDE_INT_MAX_HWIS (precision);
    1511             :   gcc_checking_assert (num_elements <= N);
    1512             :   return (num_elements * max_len - 1) * sizeof (HOST_WIDE_INT);
    1513             : }
    1514             : 
    1515             : /* This macro is used in structures that end with a trailing_wide_ints field
    1516             :    called FIELD.  It declares get_NAME() and set_NAME() methods to access
    1517             :    element I of FIELD.  */
    1518             : #define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \
    1519             :   trailing_wide_int get_##NAME () { return FIELD[I]; } \
    1520             :   template <typename T> void set_##NAME (const T &x) { FIELD[I] = x; }
    1521             : 
    1522             : namespace wi
    1523             : {
    1524             :   /* Implementation of int_traits for primitive integer types like "int".  */
    1525             :   template <typename T, bool signed_p>
    1526             :   struct primitive_int_traits
    1527             :   {
    1528             :     static const enum precision_type precision_type = FLEXIBLE_PRECISION;
    1529             :     static const bool host_dependent_precision = true;
    1530             :     static const bool is_sign_extended = true;
    1531             :     static unsigned int get_precision (T);
    1532             :     static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T);
    1533             :   };
    1534             : }
    1535             : 
    1536             : template <typename T, bool signed_p>
    1537             : inline unsigned int
    1538             : wi::primitive_int_traits <T, signed_p>::get_precision (T)
    1539             : {
    1540             :   return sizeof (T) * CHAR_BIT;
    1541             : }
    1542             : 
    1543             : template <typename T, bool signed_p>
    1544             : inline wi::storage_ref
    1545   493057065 : wi::primitive_int_traits <T, signed_p>::decompose (HOST_WIDE_INT *scratch,
    1546             :                                                    unsigned int precision, T x)
    1547             : {
    1548   493057065 :   scratch[0] = x;
    1549           0 :   if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
    1550     4672518 :     return wi::storage_ref (scratch, 1, precision);
    1551           0 :   scratch[1] = 0;
    1552           0 :   return wi::storage_ref (scratch, 2, precision);
    1553             : }
    1554             : 
    1555             : /* Allow primitive C types to be used in wi:: routines.  */
    1556             : namespace wi
    1557             : {
    1558             :   template <>
    1559             :   struct int_traits <unsigned char>
    1560             :     : public primitive_int_traits <unsigned char, false> {};
    1561             : 
    1562             :   template <>
    1563             :   struct int_traits <unsigned short>
    1564             :     : public primitive_int_traits <unsigned short, false> {};
    1565             : 
    1566             :   template <>
    1567             :   struct int_traits <int>
    1568             :     : public primitive_int_traits <int, true> {};
    1569             : 
    1570             :   template <>
    1571             :   struct int_traits <unsigned int>
    1572             :     : public primitive_int_traits <unsigned int, false> {};
    1573             : 
    1574             :   template <>
    1575             :   struct int_traits <long>
    1576             :     : public primitive_int_traits <long, true> {};
    1577             : 
    1578             :   template <>
    1579             :   struct int_traits <unsigned long>
    1580             :     : public primitive_int_traits <unsigned long, false> {};
    1581             : 
    1582             : #if defined HAVE_LONG_LONG
    1583             :   template <>
    1584             :   struct int_traits <long long>
    1585             :     : public primitive_int_traits <long long, true> {};
    1586             : 
    1587             :   template <>
    1588             :   struct int_traits <unsigned long long>
    1589             :     : public primitive_int_traits <unsigned long long, false> {};
    1590             : #endif
    1591             : }
    1592             : 
    1593             : namespace wi
    1594             : {
    1595             :   /* Stores HWI-sized integer VAL, treating it as having signedness SGN
    1596             :      and precision PRECISION.  */
    1597             :   class hwi_with_prec
    1598             :   {
    1599             :   public:
    1600             :     hwi_with_prec () {}
    1601             :     hwi_with_prec (HOST_WIDE_INT, unsigned int, signop);
    1602             :     HOST_WIDE_INT val;
    1603             :     unsigned int precision;
    1604             :     signop sgn;
    1605             :   };
    1606             : 
    1607             :   hwi_with_prec shwi (HOST_WIDE_INT, unsigned int);
    1608             :   hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int);
    1609             : 
    1610             :   hwi_with_prec minus_one (unsigned int);
    1611             :   hwi_with_prec zero (unsigned int);
    1612             :   hwi_with_prec one (unsigned int);
    1613             :   hwi_with_prec two (unsigned int);
    1614             : }
    1615             : 
    1616        1316 : inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p,
    1617             :                                          signop s)
    1618             :   : precision (p), sgn (s)
    1619             : {
    1620        1316 :   if (precision < HOST_BITS_PER_WIDE_INT)
    1621             :     val = sext_hwi (v, precision);
    1622             :   else
    1623             :     val = v;
    1624             : }
    1625             : 
    1626             : /* Return a signed integer that has value VAL and precision PRECISION.  */
    1627             : inline wi::hwi_with_prec
    1628             : wi::shwi (HOST_WIDE_INT val, unsigned int precision)
    1629             : {
    1630             :   return hwi_with_prec (val, precision, SIGNED);
    1631             : }
    1632             : 
    1633             : /* Return an unsigned integer that has value VAL and precision PRECISION.  */
    1634             : inline wi::hwi_with_prec
    1635        1316 : wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision)
    1636             : {
    1637        1316 :   return hwi_with_prec (val, precision, UNSIGNED);
    1638             : }
    1639             : 
    1640             : /* Return a wide int of -1 with precision PRECISION.  */
    1641             : inline wi::hwi_with_prec
    1642             : wi::minus_one (unsigned int precision)
    1643             : {
    1644             :   return wi::shwi (-1, precision);
    1645             : }
    1646             : 
    1647             : /* Return a wide int of 0 with precision PRECISION.  */
    1648             : inline wi::hwi_with_prec
    1649             : wi::zero (unsigned int precision)
    1650             : {
    1651             :   return wi::shwi (0, precision);
    1652             : }
    1653             : 
    1654             : /* Return a wide int of 1 with precision PRECISION.  */
    1655             : inline wi::hwi_with_prec
    1656             : wi::one (unsigned int precision)
    1657             : {
    1658             :   return wi::shwi (1, precision);
    1659             : }
    1660             : 
    1661             : /* Return a wide int of 2 with precision PRECISION.  */
    1662             : inline wi::hwi_with_prec
    1663             : wi::two (unsigned int precision)
    1664             : {
    1665             :   return wi::shwi (2, precision);
    1666             : }
    1667             : 
    1668             : namespace wi
    1669             : {
    1670             :   /* ints_for<T>::zero (X) returns a zero that, when asssigned to a T,
    1671             :      gives that T the same precision as X.  */
    1672             :   template<typename T, precision_type = int_traits<T>::precision_type>
    1673             :   struct ints_for
    1674             :   {
    1675             :     static int zero (const T &) { return 0; }
    1676             :   };
    1677             : 
    1678             :   template<typename T>
    1679             :   struct ints_for<T, VAR_PRECISION>
    1680             :   {
    1681             :     static hwi_with_prec zero (const T &);
    1682             :   };
    1683             : }
    1684             : 
    1685             : template<typename T>
    1686             : inline wi::hwi_with_prec
    1687             : wi::ints_for<T, wi::VAR_PRECISION>::zero (const T &x)
    1688             : {
    1689             :   return wi::zero (wi::get_precision (x));
    1690             : }
    1691             : 
    1692             : namespace wi
    1693             : {
    1694             :   template <>
    1695             :   struct int_traits <wi::hwi_with_prec>
    1696             :   {
    1697             :     static const enum precision_type precision_type = VAR_PRECISION;
    1698             :     /* hwi_with_prec has an explicitly-given precision, rather than the
    1699             :        precision of HOST_WIDE_INT.  */
    1700             :     static const bool host_dependent_precision = false;
    1701             :     static const bool is_sign_extended = true;
    1702             :     static unsigned int get_precision (const wi::hwi_with_prec &);
    1703             :     static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
    1704             :                                       const wi::hwi_with_prec &);
    1705             :   };
    1706             : }
    1707             : 
    1708             : inline unsigned int
    1709             : wi::int_traits <wi::hwi_with_prec>::get_precision (const wi::hwi_with_prec &x)
    1710             : {
    1711             :   return x.precision;
    1712             : }
    1713             : 
    1714             : inline wi::storage_ref
    1715        1316 : wi::int_traits <wi::hwi_with_prec>::
    1716             : decompose (HOST_WIDE_INT *scratch, unsigned int precision,
    1717             :            const wi::hwi_with_prec &x)
    1718             : {
    1719        1316 :   gcc_checking_assert (precision == x.precision);
    1720        1316 :   scratch[0] = x.val;
    1721        1316 :   if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
    1722        1316 :     return wi::storage_ref (scratch, 1, precision);
    1723           0 :   scratch[1] = 0;
    1724           0 :   return wi::storage_ref (scratch, 2, precision);
    1725             : }
    1726             : 
    1727             : /* Private functions for handling large cases out of line.  They take
    1728             :    individual length and array parameters because that is cheaper for
    1729             :    the inline caller than constructing an object on the stack and
    1730             :    passing a reference to it.  (Although many callers use wide_int_refs,
    1731             :    we generally want those to be removed by SRA.)  */
    1732             : namespace wi
    1733             : {
    1734             :   bool eq_p_large (const HOST_WIDE_INT *, unsigned int,
    1735             :                    const HOST_WIDE_INT *, unsigned int, unsigned int);
    1736             :   bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
    1737             :                     const HOST_WIDE_INT *, unsigned int);
    1738             :   bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
    1739             :                     const HOST_WIDE_INT *, unsigned int);
    1740             :   int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
    1741             :                   const HOST_WIDE_INT *, unsigned int);
    1742             :   int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
    1743             :                   const HOST_WIDE_INT *, unsigned int);
    1744             :   unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1745             :                            unsigned int, unsigned int, unsigned int);
    1746             :   unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1747             :                            unsigned int, unsigned int, unsigned int);
    1748             :   unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1749             :                               unsigned int, unsigned int, unsigned int);
    1750             :   unsigned int bswap_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1751             :                             unsigned int, unsigned int);
    1752             :   unsigned int bitreverse_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1753             :                                  unsigned int, unsigned int);
    1754             :   
    1755             :   unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1756             :                              unsigned int, unsigned int, unsigned int);
    1757             :   unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1758             :                               unsigned int, unsigned int, unsigned int,
    1759             :                               unsigned int);
    1760             :   unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1761             :                               unsigned int, unsigned int, unsigned int,
    1762             :                               unsigned int);
    1763             :   unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
    1764             :                           const HOST_WIDE_INT *, unsigned int, unsigned int);
    1765             :   unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1766             :                               unsigned int, const HOST_WIDE_INT *,
    1767             :                               unsigned int, unsigned int);
    1768             :   unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
    1769             :                          const HOST_WIDE_INT *, unsigned int, unsigned int);
    1770             :   unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1771             :                              unsigned int, const HOST_WIDE_INT *,
    1772             :                              unsigned int, unsigned int);
    1773             :   unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
    1774             :                           const HOST_WIDE_INT *, unsigned int, unsigned int);
    1775             :   unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
    1776             :                           const HOST_WIDE_INT *, unsigned int, unsigned int,
    1777             :                           signop, overflow_type *);
    1778             :   unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
    1779             :                           const HOST_WIDE_INT *, unsigned int, unsigned int,
    1780             :                           signop, overflow_type *);
    1781             :   unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1782             :                              unsigned int, const HOST_WIDE_INT *,
    1783             :                              unsigned int, unsigned int, signop,
    1784             :                              overflow_type *, bool);
    1785             :   unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *,
    1786             :                                 HOST_WIDE_INT *, const HOST_WIDE_INT *,
    1787             :                                 unsigned int, unsigned int,
    1788             :                                 const HOST_WIDE_INT *,
    1789             :                                 unsigned int, unsigned int,
    1790             :                                 signop, overflow_type *);
    1791             : }
    1792             : 
    1793             : /* Return the number of bits that integer X can hold.  */
    1794             : template <typename T>
    1795             : inline unsigned int
    1796    68317612 : wi::get_precision (const T &x)
    1797             : {
    1798   488396019 :   return wi::int_traits <T>::get_precision (x);
    1799             : }
    1800             : 
    1801             : /* Return the number of bits that the result of a binary operation can
    1802             :    hold when the input operands are X and Y.  */
    1803             : template <typename T1, typename T2>
    1804             : inline unsigned int
    1805   800710296 : wi::get_binary_precision (const T1 &x, const T2 &y)
    1806             : {
    1807             :   return get_precision (wi::int_traits <WI_BINARY_RESULT (T1, T2)>::
    1808   800710296 :                         get_binary_result (x, y));
    1809             : }
    1810             : 
    1811             : /* Copy the contents of Y to X, but keeping X's current precision.  */
    1812             : template <typename T1, typename T2>
    1813             : inline void
    1814   235207547 : wi::copy (T1 &x, const T2 &y)
    1815             : {
    1816   235207547 :   HOST_WIDE_INT *xval = x.write_val ();
    1817   235207547 :   const HOST_WIDE_INT *yval = y.get_val ();
    1818   235207547 :   unsigned int len = y.get_len ();
    1819   235207547 :   unsigned int i = 0;
    1820             :   do
    1821   235254337 :     xval[i] = yval[i];
    1822   235254337 :   while (++i < len);
    1823   235207547 :   x.set_len (len, y.is_sign_extended);
    1824   235207547 : }
    1825             : 
    1826             : /* Return true if X fits in a HOST_WIDE_INT with no loss of precision.  */
    1827             : template <typename T>
    1828             : inline bool
    1829   808874830 : wi::fits_shwi_p (const T &x)
    1830             : {
    1831   808874830 :   WIDE_INT_REF_FOR (T) xi (x);
    1832             :   return xi.len == 1;
    1833             : }
    1834             : 
    1835             : /* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of
    1836             :    precision.  */
    1837             : template <typename T>
    1838             : inline bool
    1839    32159148 : wi::fits_uhwi_p (const T &x)
    1840             : {
    1841    32159148 :   WIDE_INT_REF_FOR (T) xi (x);
    1842    32159148 :   if (xi.precision <= HOST_BITS_PER_WIDE_INT)
    1843             :     return true;
    1844    32159148 :   if (xi.len == 1)
    1845    32128628 :     return xi.slow () >= 0;
    1846       30520 :   return xi.len == 2 && xi.uhigh () == 0;
    1847             : }
    1848             : 
    1849             : /* Return true if X is negative based on the interpretation of SGN.
    1850             :    For UNSIGNED, this is always false.  */
    1851             : template <typename T>
    1852             : inline bool
    1853    50686742 : wi::neg_p (const T &x, signop sgn)
    1854             : {
    1855    50686742 :   WIDE_INT_REF_FOR (T) xi (x);
    1856    50686742 :   if (sgn == UNSIGNED)
    1857             :     return false;
    1858    50451414 :   return xi.sign_mask () < 0;
    1859             : }
    1860             : 
    1861             : /* Return -1 if the top bit of X is set and 0 if the top bit is clear.  */
    1862             : template <typename T>
    1863             : inline HOST_WIDE_INT
    1864           0 : wi::sign_mask (const T &x)
    1865             : {
    1866           0 :   WIDE_INT_REF_FOR (T) xi (x);
    1867           0 :   return xi.sign_mask ();
    1868             : }
    1869             : 
    1870             : /* Return true if X == Y.  X and Y must be binary-compatible.  */
    1871             : template <typename T1, typename T2>
    1872             : inline bool
    1873     8676921 : wi::eq_p (const T1 &x, const T2 &y)
    1874             : {
    1875     8676921 :   unsigned int precision = get_binary_precision (x, y);
    1876     8676921 :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    1877     8676921 :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    1878             :   if (xi.is_sign_extended && yi.is_sign_extended)
    1879             :     {
    1880             :       /* This case reduces to array equality.  */
    1881     5399925 :       if (xi.len != yi.len)
    1882             :         return false;
    1883             :       unsigned int i = 0;
    1884             :       do
    1885     5464137 :         if (xi.val[i] != yi.val[i])
    1886       10233 :           return false;
    1887     5415129 :       while (++i != xi.len);
    1888             :       return true;
    1889             :     }
    1890     3276996 :   if (LIKELY (yi.len == 1))
    1891             :     {
    1892             :       /* XI is only equal to YI if it too has a single HWI.  */
    1893     3276996 :       if (xi.len != 1)
    1894             :         return false;
    1895             :       /* Excess bits in xi.val[0] will be signs or zeros, so comparisons
    1896             :          with 0 are simple.  */
    1897     3276996 :       if (STATIC_CONSTANT_P (yi.val[0] == 0))
    1898           0 :         return xi.val[0] == 0;
    1899             :       /* Otherwise flush out any excess bits first.  */
    1900     3276996 :       unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0];
    1901     3276996 :       int excess = HOST_BITS_PER_WIDE_INT - precision;
    1902     3276996 :       if (excess > 0)
    1903       80995 :         diff <<= excess;
    1904     3276996 :       return diff == 0;
    1905             :     }
    1906           0 :   return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision);
    1907             : }
    1908             : 
    1909             : /* Return true if X != Y.  X and Y must be binary-compatible.  */
    1910             : template <typename T1, typename T2>
    1911             : inline bool
    1912     4511072 : wi::ne_p (const T1 &x, const T2 &y)
    1913             : {
    1914     4511072 :   return !eq_p (x, y);
    1915             : }
    1916             : 
    1917             : /* Return true if X < Y when both are treated as signed values.  */
    1918             : template <typename T1, typename T2>
    1919             : inline bool
    1920   379152246 : wi::lts_p (const T1 &x, const T2 &y)
    1921             : {
    1922   379152246 :   unsigned int precision = get_binary_precision (x, y);
    1923   379152246 :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    1924   379152246 :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    1925             :   /* We optimize x < y, where y is 64 or fewer bits.  */
    1926   379152246 :   if (wi::fits_shwi_p (yi))
    1927             :     {
    1928             :       /* Make lts_p (x, 0) as efficient as wi::neg_p (x).  */
    1929   378481436 :       if (STATIC_CONSTANT_P (yi.val[0] == 0))
    1930           0 :         return neg_p (xi);
    1931             :       /* If x fits directly into a shwi, we can compare directly.  */
    1932   378481436 :       if (wi::fits_shwi_p (xi))
    1933   363815990 :         return xi.to_shwi () < yi.to_shwi ();
    1934             :       /* If x doesn't fit and is negative, then it must be more
    1935             :          negative than any value in y, and hence smaller than y.  */
    1936    14665446 :       if (neg_p (xi))
    1937             :         return true;
    1938             :       /* If x is positive, then it must be larger than any value in y,
    1939             :          and hence greater than y.  */
    1940    14639722 :       return false;
    1941             :     }
    1942             :   /* Optimize the opposite case, if it can be detected at compile time.  */
    1943      670810 :   if (STATIC_CONSTANT_P (xi.len == 1))
    1944             :     /* If YI is negative it is lower than the least HWI.
    1945             :        If YI is positive it is greater than the greatest HWI.  */
    1946           0 :     return !neg_p (yi);
    1947      670810 :   return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len);
    1948             : }
    1949             : 
    1950             : /* Return true if X < Y when both are treated as unsigned values.  */
    1951             : template <typename T1, typename T2>
    1952             : inline bool
    1953   387233505 : wi::ltu_p (const T1 &x, const T2 &y)
    1954             : {
    1955   387233505 :   unsigned int precision = get_binary_precision (x, y);
    1956   387233505 :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    1957   387233505 :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    1958             :   /* Optimize comparisons with constants.  */
    1959     5463743 :   if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
    1960   763653530 :     return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0];
    1961     5406800 :   if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
    1962           0 :     return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0];
    1963             :   /* Optimize the case of two HWIs.  The HWIs are implicitly sign-extended
    1964             :      for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
    1965             :      values does not change the result.  */
    1966     5406740 :   if (LIKELY (xi.len + yi.len == 2))
    1967             :     {
    1968     5350627 :       unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
    1969     5350627 :       unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
    1970     5350627 :       return xl < yl;
    1971             :     }
    1972       56113 :   return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len);
    1973             : }
    1974             : 
    1975             : /* Return true if X < Y.  Signedness of X and Y is indicated by SGN.  */
    1976             : template <typename T1, typename T2>
    1977             : inline bool
    1978             : wi::lt_p (const T1 &x, const T2 &y, signop sgn)
    1979             : {
    1980             :   if (sgn == SIGNED)
    1981             :     return lts_p (x, y);
    1982             :   else
    1983             :     return ltu_p (x, y);
    1984             : }
    1985             : 
    1986             : /* Return true if X <= Y when both are treated as signed values.  */
    1987             : template <typename T1, typename T2>
    1988             : inline bool
    1989      409396 : wi::les_p (const T1 &x, const T2 &y)
    1990             : {
    1991      818792 :   return !lts_p (y, x);
    1992             : }
    1993             : 
    1994             : /* Return true if X <= Y when both are treated as unsigned values.  */
    1995             : template <typename T1, typename T2>
    1996             : inline bool
    1997             : wi::leu_p (const T1 &x, const T2 &y)
    1998             : {
    1999             :   return !ltu_p (y, x);
    2000             : }
    2001             : 
    2002             : /* Return true if X <= Y.  Signedness of X and Y is indicated by SGN.  */
    2003             : template <typename T1, typename T2>
    2004             : inline bool
    2005             : wi::le_p (const T1 &x, const T2 &y, signop sgn)
    2006             : {
    2007             :   if (sgn == SIGNED)
    2008             :     return les_p (x, y);
    2009             :   else
    2010             :     return leu_p (x, y);
    2011             : }
    2012             : 
    2013             : /* Return true if X > Y when both are treated as signed values.  */
    2014             : template <typename T1, typename T2>
    2015             : inline bool
    2016             : wi::gts_p (const T1 &x, const T2 &y)
    2017             : {
    2018             :   return lts_p (y, x);
    2019             : }
    2020             : 
    2021             : /* Return true if X > Y when both are treated as unsigned values.  */
    2022             : template <typename T1, typename T2>
    2023             : inline bool
    2024       56507 : wi::gtu_p (const T1 &x, const T2 &y)
    2025             : {
    2026       56507 :   return ltu_p (y, x);
    2027             : }
    2028             : 
    2029             : /* Return true if X > Y.  Signedness of X and Y is indicated by SGN.  */
    2030             : template <typename T1, typename T2>
    2031             : inline bool
    2032             : wi::gt_p (const T1 &x, const T2 &y, signop sgn)
    2033             : {
    2034             :   if (sgn == SIGNED)
    2035             :     return gts_p (x, y);
    2036             :   else
    2037             :     return gtu_p (x, y);
    2038             : }
    2039             : 
    2040             : /* Return true if X >= Y when both are treated as signed values.  */
    2041             : template <typename T1, typename T2>
    2042             : inline bool
    2043        3112 : wi::ges_p (const T1 &x, const T2 &y)
    2044             : {
    2045        3112 :   return !lts_p (x, y);
    2046             : }
    2047             : 
    2048             : /* Return true if X >= Y when both are treated as unsigned values.  */
    2049             : template <typename T1, typename T2>
    2050             : inline bool
    2051   103226361 : wi::geu_p (const T1 &x, const T2 &y)
    2052             : {
    2053   103226361 :   return !ltu_p (x, y);
    2054             : }
    2055             : 
    2056             : /* Return true if X >= Y.  Signedness of X and Y is indicated by SGN.  */
    2057             : template <typename T1, typename T2>
    2058             : inline bool
    2059             : wi::ge_p (const T1 &x, const T2 &y, signop sgn)
    2060             : {
    2061             :   if (sgn == SIGNED)
    2062             :     return ges_p (x, y);
    2063             :   else
    2064             :     return geu_p (x, y);
    2065             : }
    2066             : 
    2067             : /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y.  Treat both X and Y
    2068             :    as signed values.  */
    2069             : template <typename T1, typename T2>
    2070             : inline int
    2071    25647624 : wi::cmps (const T1 &x, const T2 &y)
    2072             : {
    2073    25647624 :   unsigned int precision = get_binary_precision (x, y);
    2074    25647624 :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2075    25647624 :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2076    25647624 :   if (wi::fits_shwi_p (yi))
    2077             :     {
    2078             :       /* Special case for comparisons with 0.  */
    2079    25593524 :       if (STATIC_CONSTANT_P (yi.val[0] == 0))
    2080           0 :         return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0);
    2081             :       /* If x fits into a signed HWI, we can compare directly.  */
    2082    25593524 :       if (wi::fits_shwi_p (xi))
    2083             :         {
    2084    25555403 :           HOST_WIDE_INT xl = xi.to_shwi ();
    2085    25555403 :           HOST_WIDE_INT yl = yi.to_shwi ();
    2086    25555403 :           return xl < yl ? -1 : xl > yl;
    2087             :         }
    2088             :       /* If x doesn't fit and is negative, then it must be more
    2089             :          negative than any signed HWI, and hence smaller than y.  */
    2090       38121 :       if (neg_p (xi))
    2091             :         return -1;
    2092             :       /* If x is positive, then it must be larger than any signed HWI,
    2093             :          and hence greater than y.  */
    2094             :       return 1;
    2095             :     }
    2096             :   /* Optimize the opposite case, if it can be detected at compile time.  */
    2097       54100 :   if (STATIC_CONSTANT_P (xi.len == 1))
    2098             :     /* If YI is negative it is lower than the least HWI.
    2099             :        If YI is positive it is greater than the greatest HWI.  */
    2100           0 :     return neg_p (yi) ? 1 : -1;
    2101       54100 :   return cmps_large (xi.val, xi.len, precision, yi.val, yi.len);
    2102             : }
    2103             : 
    2104             : /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y.  Treat both X and Y
    2105             :    as unsigned values.  */
    2106             : template <typename T1, typename T2>
    2107             : inline int
    2108             : wi::cmpu (const T1 &x, const T2 &y)
    2109             : {
    2110             :   unsigned int precision = get_binary_precision (x, y);
    2111             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2112             :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2113             :   /* Optimize comparisons with constants.  */
    2114             :   if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
    2115             :     {
    2116             :       /* If XI doesn't fit in a HWI then it must be larger than YI.  */
    2117             :       if (xi.len != 1)
    2118             :         return 1;
    2119             :       /* Otherwise compare directly.  */
    2120             :       unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
    2121             :       unsigned HOST_WIDE_INT yl = yi.val[0];
    2122             :       return xl < yl ? -1 : xl > yl;
    2123             :     }
    2124             :   if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
    2125             :     {
    2126             :       /* If YI doesn't fit in a HWI then it must be larger than XI.  */
    2127             :       if (yi.len != 1)
    2128             :         return -1;
    2129             :       /* Otherwise compare directly.  */
    2130             :       unsigned HOST_WIDE_INT xl = xi.val[0];
    2131             :       unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
    2132             :       return xl < yl ? -1 : xl > yl;
    2133             :     }
    2134             :   /* Optimize the case of two HWIs.  The HWIs are implicitly sign-extended
    2135             :      for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
    2136             :      values does not change the result.  */
    2137             :   if (LIKELY (xi.len + yi.len == 2))
    2138             :     {
    2139             :       unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
    2140             :       unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
    2141             :       return xl < yl ? -1 : xl > yl;
    2142             :     }
    2143             :   return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len);
    2144             : }
    2145             : 
    2146             : /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y.  Signedness of
    2147             :    X and Y indicated by SGN.  */
    2148             : template <typename T1, typename T2>
    2149             : inline int
    2150             : wi::cmp (const T1 &x, const T2 &y, signop sgn)
    2151             : {
    2152             :   if (sgn == SIGNED)
    2153             :     return cmps (x, y);
    2154             :   else
    2155             :     return cmpu (x, y);
    2156             : }
    2157             : 
    2158             : /* Return ~x.  */
    2159             : template <typename T>
    2160             : inline WI_UNARY_RESULT (T)
    2161             : wi::bit_not (const T &x)
    2162             : {
    2163             :   WI_UNARY_RESULT_VAR (result, val, T, x);
    2164             :   WIDE_INT_REF_FOR (T) xi (x, get_precision (result));
    2165             :   for (unsigned int i = 0; i < xi.len; ++i)
    2166             :     val[i] = ~xi.val[i];
    2167             :   result.set_len (xi.len);
    2168             :   return result;
    2169             : }
    2170             : 
    2171             : /* Return -x.  */
    2172             : template <typename T>
    2173             : inline WI_UNARY_RESULT (T)
    2174      358847 : wi::neg (const T &x)
    2175             : {
    2176      358847 :   return sub (0, x);
    2177             : }
    2178             : 
    2179             : /* Return -x.  Indicate in *OVERFLOW if performing the negation would
    2180             :    cause an overflow.  */
    2181             : template <typename T>
    2182             : inline WI_UNARY_RESULT (T)
    2183             : wi::neg (const T &x, overflow_type *overflow)
    2184             : {
    2185             :   *overflow = only_sign_bit_p (x) ? OVF_OVERFLOW : OVF_NONE;
    2186             :   return sub (0, x);
    2187             : }
    2188             : 
    2189             : /* Return the absolute value of x.  */
    2190             : template <typename T>
    2191             : inline WI_UNARY_RESULT (T)
    2192    32118957 : wi::abs (const T &x)
    2193             : {
    2194    32118957 :   return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x);
    2195             : }
    2196             : 
    2197             : /* Return the result of sign-extending the low OFFSET bits of X.  */
    2198             : template <typename T>
    2199             : inline WI_UNARY_RESULT (T)
    2200     3759447 : wi::sext (const T &x, unsigned int offset)
    2201             : {
    2202     3759447 :   WI_UNARY_RESULT_VAR (result, val, T, x);
    2203     3759447 :   unsigned int precision = get_precision (result);
    2204     3759447 :   WIDE_INT_REF_FOR (T) xi (x, precision);
    2205             : 
    2206     3759447 :   if (offset <= HOST_BITS_PER_WIDE_INT)
    2207             :     {
    2208     3759377 :       val[0] = sext_hwi (xi.ulow (), offset);
    2209     3759447 :       result.set_len (1, true);
    2210             :     }
    2211             :   else
    2212          70 :     result.set_len (sext_large (val, xi.val, xi.len, precision, offset));
    2213     3759447 :   return result;
    2214             : }
    2215             : 
    2216             : /* Return the result of zero-extending the low OFFSET bits of X.  */
    2217             : template <typename T>
    2218             : inline WI_UNARY_RESULT (T)
    2219    62005175 : wi::zext (const T &x, unsigned int offset)
    2220             : {
    2221    62005175 :   WI_UNARY_RESULT_VAR (result, val, T, x);
    2222    62005175 :   unsigned int precision = get_precision (result);
    2223    62005175 :   WIDE_INT_REF_FOR (T) xi (x, precision);
    2224             : 
    2225             :   /* This is not just an optimization, it is actually required to
    2226             :      maintain canonization.  */
    2227    62005175 :   if (offset >= precision)
    2228             :     {
    2229           0 :       wi::copy (result, xi);
    2230           0 :       return result;
    2231             :     }
    2232             : 
    2233             :   /* In these cases we know that at least the top bit will be clear,
    2234             :      so no sign extension is necessary.  */
    2235    62005175 :   if (offset < HOST_BITS_PER_WIDE_INT)
    2236             :     {
    2237    15472307 :       val[0] = zext_hwi (xi.ulow (), offset);
    2238    62005175 :       result.set_len (1, true);
    2239             :     }
    2240             :   else
    2241    46532868 :     result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true);
    2242             :   return result;
    2243             : }
    2244             : 
    2245             : /* Return the result of extending the low OFFSET bits of X according to
    2246             :    signedness SGN.  */
    2247             : template <typename T>
    2248             : inline WI_UNARY_RESULT (T)
    2249      190490 : wi::ext (const T &x, unsigned int offset, signop sgn)
    2250             : {
    2251      190490 :   return sgn == SIGNED ? sext (x, offset) : zext (x, offset);
    2252             : }
    2253             : 
    2254             : /* Return an integer that represents X | (1 << bit).  */
    2255             : template <typename T>
    2256             : inline WI_UNARY_RESULT (T)
    2257             : wi::set_bit (const T &x, unsigned int bit)
    2258             : {
    2259             :   WI_UNARY_RESULT_VAR (result, val, T, x);
    2260             :   unsigned int precision = get_precision (result);
    2261             :   WIDE_INT_REF_FOR (T) xi (x, precision);
    2262             :   if (precision <= HOST_BITS_PER_WIDE_INT)
    2263             :     {
    2264             :       val[0] = xi.ulow () | (HOST_WIDE_INT_1U << bit);
    2265             :       result.set_len (1);
    2266             :     }
    2267             :   else
    2268             :     result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit));
    2269             :   return result;
    2270             : }
    2271             : 
    2272             : /* Byte swap the integer X.
    2273             :    ??? This always swaps 8-bit octets, regardless of BITS_PER_UNIT.
    2274             :    This function requires X's precision to be a multiple of 16 bits,
    2275             :    so care needs to be taken for targets where BITS_PER_UNIT != 8.  */
    2276             : template <typename T>
    2277             : inline WI_UNARY_RESULT (T)
    2278             : wi::bswap (const T &x)
    2279             : {
    2280             :   WI_UNARY_RESULT_VAR (result, val, T, x);
    2281             :   unsigned int precision = get_precision (result);
    2282             :   WIDE_INT_REF_FOR (T) xi (x, precision);
    2283             :   result.set_len (bswap_large (val, xi.val, xi.len, precision));
    2284             :   return result;
    2285             : }
    2286             : 
    2287             : /* Bitreverse the integer X.  */
    2288             : template <typename T>
    2289             : inline WI_UNARY_RESULT (T)
    2290             : wi::bitreverse (const T &x)
    2291             : {
    2292             :   WI_UNARY_RESULT_VAR (result, val, T, x);
    2293             :   unsigned int precision = get_precision (result);
    2294             :   WIDE_INT_REF_FOR (T) xi (x, precision);
    2295             :   result.set_len (bitreverse_large (val, xi.val, xi.len, precision));
    2296             :   return result;
    2297             : }
    2298             : 
    2299             : /* Return the mininum of X and Y, treating them both as having
    2300             :    signedness SGN.  */
    2301             : template <typename T1, typename T2>
    2302             : inline WI_BINARY_RESULT (T1, T2)
    2303             : wi::min (const T1 &x, const T2 &y, signop sgn)
    2304             : {
    2305             :   WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
    2306             :   unsigned int precision = get_precision (result);
    2307             :   if (wi::le_p (x, y, sgn))
    2308             :     wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
    2309             :   else
    2310             :     wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
    2311             :   return result;
    2312             : }
    2313             : 
    2314             : /* Return the minimum of X and Y, treating both as signed values.  */
    2315             : template <typename T1, typename T2>
    2316             : inline WI_BINARY_RESULT (T1, T2)
    2317             : wi::smin (const T1 &x, const T2 &y)
    2318             : {
    2319             :   return wi::min (x, y, SIGNED);
    2320             : }
    2321             : 
    2322             : /* Return the minimum of X and Y, treating both as unsigned values.  */
    2323             : template <typename T1, typename T2>
    2324             : inline WI_BINARY_RESULT (T1, T2)
    2325             : wi::umin (const T1 &x, const T2 &y)
    2326             : {
    2327             :   return wi::min (x, y, UNSIGNED);
    2328             : }
    2329             : 
    2330             : /* Return the maxinum of X and Y, treating them both as having
    2331             :    signedness SGN.  */
    2332             : template <typename T1, typename T2>
    2333             : inline WI_BINARY_RESULT (T1, T2)
    2334             : wi::max (const T1 &x, const T2 &y, signop sgn)
    2335             : {
    2336             :   WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
    2337             :   unsigned int precision = get_precision (result);
    2338             :   if (wi::ge_p (x, y, sgn))
    2339             :     wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
    2340             :   else
    2341             :     wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
    2342             :   return result;
    2343             : }
    2344             : 
    2345             : /* Return the maximum of X and Y, treating both as signed values.  */
    2346             : template <typename T1, typename T2>
    2347             : inline WI_BINARY_RESULT (T1, T2)
    2348             : wi::smax (const T1 &x, const T2 &y)
    2349             : {
    2350             :   return wi::max (x, y, SIGNED);
    2351             : }
    2352             : 
    2353             : /* Return the maximum of X and Y, treating both as unsigned values.  */
    2354             : template <typename T1, typename T2>
    2355             : inline WI_BINARY_RESULT (T1, T2)
    2356             : wi::umax (const T1 &x, const T2 &y)
    2357             : {
    2358             :   return wi::max (x, y, UNSIGNED);
    2359             : }
    2360             : 
    2361             : /* Return X & Y.  */
    2362             : template <typename T1, typename T2>
    2363             : inline WI_BINARY_RESULT (T1, T2)
    2364             : wi::bit_and (const T1 &x, const T2 &y)
    2365             : {
    2366             :   WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
    2367             :   unsigned int precision = get_precision (result);
    2368             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2369             :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2370             :   bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
    2371             :   if (LIKELY (xi.len + yi.len == 2))
    2372             :     {
    2373             :       val[0] = xi.ulow () & yi.ulow ();
    2374             :       result.set_len (1, is_sign_extended);
    2375             :     }
    2376             :   else
    2377             :     result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len,
    2378             :                                precision), is_sign_extended);
    2379             :   return result;
    2380             : }
    2381             : 
    2382             : /* Return X & ~Y.  */
    2383             : template <typename T1, typename T2>
    2384             : inline WI_BINARY_RESULT (T1, T2)
    2385             : wi::bit_and_not (const T1 &x, const T2 &y)
    2386             : {
    2387             :   WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
    2388             :   unsigned int precision = get_precision (result);
    2389             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2390             :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2391             :   bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
    2392             :   if (LIKELY (xi.len + yi.len == 2))
    2393             :     {
    2394             :       val[0] = xi.ulow () & ~yi.ulow ();
    2395             :       result.set_len (1, is_sign_extended);
    2396             :     }
    2397             :   else
    2398             :     result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len,
    2399             :                                    precision), is_sign_extended);
    2400             :   return result;
    2401             : }
    2402             : 
    2403             : /* Return X | Y.  */
    2404             : template <typename T1, typename T2>
    2405             : inline WI_BINARY_RESULT (T1, T2)
    2406             : wi::bit_or (const T1 &x, const T2 &y)
    2407             : {
    2408             :   WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
    2409             :   unsigned int precision = get_precision (result);
    2410             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2411             :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2412             :   bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
    2413             :   if (LIKELY (xi.len + yi.len == 2))
    2414             :     {
    2415             :       val[0] = xi.ulow () | yi.ulow ();
    2416             :       result.set_len (1, is_sign_extended);
    2417             :     }
    2418             :   else
    2419             :     result.set_len (or_large (val, xi.val, xi.len,
    2420             :                               yi.val, yi.len, precision), is_sign_extended);
    2421             :   return result;
    2422             : }
    2423             : 
    2424             : /* Return X | ~Y.  */
    2425             : template <typename T1, typename T2>
    2426             : inline WI_BINARY_RESULT (T1, T2)
    2427             : wi::bit_or_not (const T1 &x, const T2 &y)
    2428             : {
    2429             :   WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
    2430             :   unsigned int precision = get_precision (result);
    2431             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2432             :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2433             :   bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
    2434             :   if (LIKELY (xi.len + yi.len == 2))
    2435             :     {
    2436             :       val[0] = xi.ulow () | ~yi.ulow ();
    2437             :       result.set_len (1, is_sign_extended);
    2438             :     }
    2439             :   else
    2440             :     result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len,
    2441             :                                   precision), is_sign_extended);
    2442             :   return result;
    2443             : }
    2444             : 
    2445             : /* Return X ^ Y.  */
    2446             : template <typename T1, typename T2>
    2447             : inline WI_BINARY_RESULT (T1, T2)
    2448             : wi::bit_xor (const T1 &x, const T2 &y)
    2449             : {
    2450             :   WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
    2451             :   unsigned int precision = get_precision (result);
    2452             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2453             :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2454             :   bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
    2455             :   if (LIKELY (xi.len + yi.len == 2))
    2456             :     {
    2457             :       val[0] = xi.ulow () ^ yi.ulow ();
    2458             :       result.set_len (1, is_sign_extended);
    2459             :     }
    2460             :   else
    2461             :     result.set_len (xor_large (val, xi.val, xi.len,
    2462             :                                yi.val, yi.len, precision), is_sign_extended);
    2463             :   return result;
    2464             : }
    2465             : 
    2466             : /* Return X + Y.  */
    2467             : template <typename T1, typename T2>
    2468             : inline WI_BINARY_RESULT (T1, T2)
    2469      235297 : wi::add (const T1 &x, const T2 &y)
    2470             : {
    2471      235297 :   WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
    2472      235297 :   unsigned int precision = get_precision (result);
    2473      235297 :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2474      235297 :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2475             :   if (precision <= HOST_BITS_PER_WIDE_INT)
    2476             :     {
    2477             :       val[0] = xi.ulow () + yi.ulow ();
    2478             :       result.set_len (1);
    2479             :     }
    2480             :   /* If the precision is known at compile time to be greater than
    2481             :      HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
    2482             :      knowing that (a) all bits in those HWIs are significant and
    2483             :      (b) the result has room for at least two HWIs.  This provides
    2484             :      a fast path for things like offset_int and widest_int.
    2485             : 
    2486             :      The STATIC_CONSTANT_P test prevents this path from being
    2487             :      used for wide_ints.  wide_ints with precisions greater than
    2488             :      HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
    2489             :      point handling them inline.  */
    2490             :   else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
    2491      235297 :            && LIKELY (xi.len + yi.len == 2))
    2492             :     {
    2493      235222 :       unsigned HOST_WIDE_INT xl = xi.ulow ();
    2494      235222 :       unsigned HOST_WIDE_INT yl = yi.ulow ();
    2495      235222 :       unsigned HOST_WIDE_INT resultl = xl + yl;
    2496      235222 :       val[0] = resultl;
    2497      235222 :       val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
    2498      470519 :       result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl))
    2499      235222 :                            >> (HOST_BITS_PER_WIDE_INT - 1)));
    2500             :     }
    2501             :   else
    2502          75 :     result.set_len (add_large (val, xi.val, xi.len,
    2503             :                                yi.val, yi.len, precision,
    2504             :                                UNSIGNED, 0));
    2505      235297 :   return result;
    2506             : }
    2507             : 
    2508             : /* Return X + Y.  Treat X and Y as having the signednes given by SGN
    2509             :    and indicate in *OVERFLOW whether the operation overflowed.  */
    2510             : template <typename T1, typename T2>
    2511             : inline WI_BINARY_RESULT (T1, T2)
    2512     3864067 : wi::add (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
    2513             : {
    2514     3864067 :   WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
    2515     3864067 :   unsigned int precision = get_precision (result);
    2516     3864067 :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2517     3864067 :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2518             :   if (precision <= HOST_BITS_PER_WIDE_INT)
    2519             :     {
    2520             :       unsigned HOST_WIDE_INT xl = xi.ulow ();
    2521             :       unsigned HOST_WIDE_INT yl = yi.ulow ();
    2522             :       unsigned HOST_WIDE_INT resultl = xl + yl;
    2523             :       if (sgn == SIGNED)
    2524             :         {
    2525             :           if ((((resultl ^ xl) & (resultl ^ yl))
    2526             :                >> (precision - 1)) & 1)
    2527             :             {
    2528             :               if (xl > resultl)
    2529             :                 *overflow = OVF_UNDERFLOW;
    2530             :               else if (xl < resultl)
    2531             :                 *overflow = OVF_OVERFLOW;
    2532             :               else
    2533             :                 *overflow = OVF_NONE;
    2534             :             }
    2535             :           else
    2536             :             *overflow = OVF_NONE;
    2537             :         }
    2538             :       else
    2539             :         *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
    2540             :                      < (xl << (HOST_BITS_PER_WIDE_INT - precision)))
    2541             :           ? OVF_OVERFLOW : OVF_NONE;
    2542             :       val[0] = resultl;
    2543             :       result.set_len (1);
    2544             :     }
    2545             :   else
    2546     3864067 :     result.set_len (add_large (val, xi.val, xi.len,
    2547             :                                yi.val, yi.len, precision,
    2548             :                                sgn, overflow));
    2549     3864067 :   return result;
    2550             : }
    2551             : 
    2552             : /* Return X - Y.  */
    2553             : template <typename T1, typename T2>
    2554             : inline WI_BINARY_RESULT (T1, T2)
    2555    13213734 : wi::sub (const T1 &x, const T2 &y)
    2556             : {
    2557    13213734 :   WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
    2558    13213734 :   unsigned int precision = get_precision (result);
    2559    13213734 :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2560    13213734 :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2561             :   if (precision <= HOST_BITS_PER_WIDE_INT)
    2562             :     {
    2563             :       val[0] = xi.ulow () - yi.ulow ();
    2564             :       result.set_len (1);
    2565             :     }
    2566             :   /* If the precision is known at compile time to be greater than
    2567             :      HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
    2568             :      knowing that (a) all bits in those HWIs are significant and
    2569             :      (b) the result has room for at least two HWIs.  This provides
    2570             :      a fast path for things like offset_int and widest_int.
    2571             : 
    2572             :      The STATIC_CONSTANT_P test prevents this path from being
    2573             :      used for wide_ints.  wide_ints with precisions greater than
    2574             :      HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
    2575             :      point handling them inline.  */
    2576             :   else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
    2577    13213734 :            && LIKELY (xi.len + yi.len == 2))
    2578             :     {
    2579    13154114 :       unsigned HOST_WIDE_INT xl = xi.ulow ();
    2580    13154114 :       unsigned HOST_WIDE_INT yl = yi.ulow ();
    2581    13154114 :       unsigned HOST_WIDE_INT resultl = xl - yl;
    2582    13154114 :       val[0] = resultl;
    2583    13154114 :       val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
    2584    26367848 :       result.set_len (1 + (((resultl ^ xl) & (xl ^ yl))
    2585    13154114 :                            >> (HOST_BITS_PER_WIDE_INT - 1)));
    2586             :     }
    2587             :   else
    2588       59620 :     result.set_len (sub_large (val, xi.val, xi.len,
    2589             :                                yi.val, yi.len, precision,
    2590             :                                UNSIGNED, 0));
    2591    13213734 :   return result;
    2592             : }
    2593             : 
    2594             : /* Return X - Y.  Treat X and Y as having the signednes given by SGN
    2595             :    and indicate in *OVERFLOW whether the operation overflowed.  */
    2596             : template <typename T1, typename T2>
    2597             : inline WI_BINARY_RESULT (T1, T2)
    2598             : wi::sub (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
    2599             : {
    2600             :   WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
    2601             :   unsigned int precision = get_precision (result);
    2602             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2603             :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2604             :   if (precision <= HOST_BITS_PER_WIDE_INT)
    2605             :     {
    2606             :       unsigned HOST_WIDE_INT xl = xi.ulow ();
    2607             :       unsigned HOST_WIDE_INT yl = yi.ulow ();
    2608             :       unsigned HOST_WIDE_INT resultl = xl - yl;
    2609             :       if (sgn == SIGNED)
    2610             :         {
    2611             :           if ((((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1)
    2612             :             {
    2613             :               if (xl > yl)
    2614             :                 *overflow = OVF_UNDERFLOW;
    2615             :               else if (xl < yl)
    2616             :                 *overflow = OVF_OVERFLOW;
    2617             :               else
    2618             :                 *overflow = OVF_NONE;
    2619             :             }
    2620             :           else
    2621             :             *overflow = OVF_NONE;
    2622             :         }
    2623             :       else
    2624             :         *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
    2625             :                      > (xl << (HOST_BITS_PER_WIDE_INT - precision)))
    2626             :           ? OVF_UNDERFLOW : OVF_NONE;
    2627             :       val[0] = resultl;
    2628             :       result.set_len (1);
    2629             :     }
    2630             :   else
    2631             :     result.set_len (sub_large (val, xi.val, xi.len,
    2632             :                                yi.val, yi.len, precision,
    2633             :                                sgn, overflow));
    2634             :   return result;
    2635             : }
    2636             : 
    2637             : /* Return X * Y.  */
    2638             : template <typename T1, typename T2>
    2639             : inline WI_BINARY_RESULT (T1, T2)
    2640          83 : wi::mul (const T1 &x, const T2 &y)
    2641             : {
    2642          83 :   WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
    2643          83 :   unsigned int precision = get_precision (result);
    2644          83 :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2645          83 :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2646             :   if (precision <= HOST_BITS_PER_WIDE_INT)
    2647             :     {
    2648             :       val[0] = xi.ulow () * yi.ulow ();
    2649             :       result.set_len (1);
    2650             :     }
    2651             :   else
    2652          83 :     result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len,
    2653             :                                   precision, UNSIGNED, 0, false));
    2654          83 :   return result;
    2655             : }
    2656             : 
    2657             : /* Return X * Y.  Treat X and Y as having the signednes given by SGN
    2658             :    and indicate in *OVERFLOW whether the operation overflowed.  */
    2659             : template <typename T1, typename T2>
    2660             : inline WI_BINARY_RESULT (T1, T2)
    2661       58282 : wi::mul (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
    2662             : {
    2663       58282 :   WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
    2664       58282 :   unsigned int precision = get_precision (result);
    2665       58282 :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2666       58282 :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2667       58282 :   result.set_len (mul_internal (val, xi.val, xi.len,
    2668             :                                 yi.val, yi.len, precision,
    2669             :                                 sgn, overflow, false));
    2670       58282 :   return result;
    2671             : }
    2672             : 
    2673             : /* Return X * Y, treating both X and Y as signed values.  Indicate in
    2674             :    *OVERFLOW whether the operation overflowed.  */
    2675             : template <typename T1, typename T2>
    2676             : inline WI_BINARY_RESULT (T1, T2)
    2677             : wi::smul (const T1 &x, const T2 &y, overflow_type *overflow)
    2678             : {
    2679             :   return mul (x, y, SIGNED, overflow);
    2680             : }
    2681             : 
    2682             : /* Return X * Y, treating both X and Y as unsigned values.  Indicate in
    2683             :   *OVERFLOW if the result overflows.  */
    2684             : template <typename T1, typename T2>
    2685             : inline WI_BINARY_RESULT (T1, T2)
    2686             : wi::umul (const T1 &x, const T2 &y, overflow_type *overflow)
    2687             : {
    2688             :   return mul (x, y, UNSIGNED, overflow);
    2689             : }
    2690             : 
    2691             : /* Perform a widening multiplication of X and Y, extending the values
    2692             :    according to SGN, and return the high part of the result.  */
    2693             : template <typename T1, typename T2>
    2694             : inline WI_BINARY_RESULT (T1, T2)
    2695             : wi::mul_high (const T1 &x, const T2 &y, signop sgn)
    2696             : {
    2697             :   WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
    2698             :   unsigned int precision = get_precision (result);
    2699             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2700             :   WIDE_INT_REF_FOR (T2) yi (y, precision);
    2701             :   result.set_len (mul_internal (val, xi.val, xi.len,
    2702             :                                 yi.val, yi.len, precision,
    2703             :                                 sgn, 0, true));
    2704             :   return result;
    2705             : }
    2706             : 
    2707             : /* Return X / Y, rouding towards 0.  Treat X and Y as having the
    2708             :    signedness given by SGN.  Indicate in *OVERFLOW if the result
    2709             :    overflows.  */
    2710             : template <typename T1, typename T2>
    2711             : inline WI_BINARY_RESULT (T1, T2)
    2712       56323 : wi::div_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
    2713             : {
    2714       56323 :   WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
    2715       56323 :   unsigned int precision = get_precision (quotient);
    2716       56323 :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2717       56323 :   WIDE_INT_REF_FOR (T2) yi (y);
    2718             : 
    2719       56323 :   quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len,
    2720             :                                      precision,
    2721             :                                      yi.val, yi.len, yi.precision,
    2722             :                                      sgn, overflow));
    2723       56323 :   return quotient;
    2724             : }
    2725             : 
    2726             : /* Return X / Y, rouding towards 0.  Treat X and Y as signed values.  */
    2727             : template <typename T1, typename T2>
    2728             : inline WI_BINARY_RESULT (T1, T2)
    2729             : wi::sdiv_trunc (const T1 &x, const T2 &y)
    2730             : {
    2731             :   return div_trunc (x, y, SIGNED);
    2732             : }
    2733             : 
    2734             : /* Return X / Y, rouding towards 0.  Treat X and Y as unsigned values.  */
    2735             : template <typename T1, typename T2>
    2736             : inline WI_BINARY_RESULT (T1, T2)
    2737       56323 : wi::udiv_trunc (const T1 &x, const T2 &y)
    2738             : {
    2739       56323 :   return div_trunc (x, y, UNSIGNED);
    2740             : }
    2741             : 
    2742             : /* Return X / Y, rouding towards -inf.  Treat X and Y as having the
    2743             :    signedness given by SGN.  Indicate in *OVERFLOW if the result
    2744             :    overflows.  */
    2745             : template <typename T1, typename T2>
    2746             : inline WI_BINARY_RESULT (T1, T2)
    2747             : wi::div_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
    2748             : {
    2749             :   WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
    2750             :   WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
    2751             :   unsigned int precision = get_precision (quotient);
    2752             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2753             :   WIDE_INT_REF_FOR (T2) yi (y);
    2754             : 
    2755             :   unsigned int remainder_len;
    2756             :   quotient.set_len (divmod_internal (quotient_val,
    2757             :                                      &remainder_len, remainder_val,
    2758             :                                      xi.val, xi.len, precision,
    2759             :                                      yi.val, yi.len, yi.precision, sgn,
    2760             :                                      overflow));
    2761             :   remainder.set_len (remainder_len);
    2762             :   if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
    2763             :     return quotient - 1;
    2764             :   return quotient;
    2765             : }
    2766             : 
    2767             : /* Return X / Y, rouding towards -inf.  Treat X and Y as signed values.  */
    2768             : template <typename T1, typename T2>
    2769             : inline WI_BINARY_RESULT (T1, T2)
    2770             : wi::sdiv_floor (const T1 &x, const T2 &y)
    2771             : {
    2772             :   return div_floor (x, y, SIGNED);
    2773             : }
    2774             : 
    2775             : /* Return X / Y, rouding towards -inf.  Treat X and Y as unsigned values.  */
    2776             : /* ??? Why do we have both this and udiv_trunc.  Aren't they the same?  */
    2777             : template <typename T1, typename T2>
    2778             : inline WI_BINARY_RESULT (T1, T2)
    2779             : wi::udiv_floor (const T1 &x, const T2 &y)
    2780             : {
    2781             :   return div_floor (x, y, UNSIGNED);
    2782             : }
    2783             : 
    2784             : /* Return X / Y, rouding towards +inf.  Treat X and Y as having the
    2785             :    signedness given by SGN.  Indicate in *OVERFLOW if the result
    2786             :    overflows.  */
    2787             : template <typename T1, typename T2>
    2788             : inline WI_BINARY_RESULT (T1, T2)
    2789             : wi::div_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
    2790             : {
    2791             :   WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
    2792             :   WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
    2793             :   unsigned int precision = get_precision (quotient);
    2794             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2795             :   WIDE_INT_REF_FOR (T2) yi (y);
    2796             : 
    2797             :   unsigned int remainder_len;
    2798             :   quotient.set_len (divmod_internal (quotient_val,
    2799             :                                      &remainder_len, remainder_val,
    2800             :                                      xi.val, xi.len, precision,
    2801             :                                      yi.val, yi.len, yi.precision, sgn,
    2802             :                                      overflow));
    2803             :   remainder.set_len (remainder_len);
    2804             :   if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
    2805             :     return quotient + 1;
    2806             :   return quotient;
    2807             : }
    2808             : 
    2809             : /* Return X / Y, rouding towards +inf.  Treat X and Y as unsigned values.  */
    2810             : template <typename T1, typename T2>
    2811             : inline WI_BINARY_RESULT (T1, T2)
    2812             : wi::udiv_ceil (const T1 &x, const T2 &y)
    2813             : {
    2814             :   return div_ceil (x, y, UNSIGNED);
    2815             : }
    2816             : 
    2817             : /* Return X / Y, rouding towards nearest with ties away from zero.
    2818             :    Treat X and Y as having the signedness given by SGN.  Indicate
    2819             :    in *OVERFLOW if the result overflows.  */
    2820             : template <typename T1, typename T2>
    2821             : inline WI_BINARY_RESULT (T1, T2)
    2822             : wi::div_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
    2823             : {
    2824             :   WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
    2825             :   WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
    2826             :   unsigned int precision = get_precision (quotient);
    2827             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2828             :   WIDE_INT_REF_FOR (T2) yi (y);
    2829             : 
    2830             :   unsigned int remainder_len;
    2831             :   quotient.set_len (divmod_internal (quotient_val,
    2832             :                                      &remainder_len, remainder_val,
    2833             :                                      xi.val, xi.len, precision,
    2834             :                                      yi.val, yi.len, yi.precision, sgn,
    2835             :                                      overflow));
    2836             :   remainder.set_len (remainder_len);
    2837             : 
    2838             :   if (remainder != 0)
    2839             :     {
    2840             :       if (sgn == SIGNED)
    2841             :         {
    2842             :           WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
    2843             :           if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
    2844             :             {
    2845             :               if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
    2846             :                 return quotient - 1;
    2847             :               else
    2848             :                 return quotient + 1;
    2849             :             }
    2850             :         }
    2851             :       else
    2852             :         {
    2853             :           if (wi::geu_p (remainder, wi::sub (y, remainder)))
    2854             :             return quotient + 1;
    2855             :         }
    2856             :     }
    2857             :   return quotient;
    2858             : }
    2859             : 
    2860             : /* Return X / Y, rouding towards 0.  Treat X and Y as having the
    2861             :    signedness given by SGN.  Store the remainder in *REMAINDER_PTR.  */
    2862             : template <typename T1, typename T2>
    2863             : inline WI_BINARY_RESULT (T1, T2)
    2864             : wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn,
    2865             :                   WI_BINARY_RESULT (T1, T2) *remainder_ptr)
    2866             : {
    2867             :   WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
    2868             :   WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
    2869             :   unsigned int precision = get_precision (quotient);
    2870             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2871             :   WIDE_INT_REF_FOR (T2) yi (y);
    2872             : 
    2873             :   unsigned int remainder_len;
    2874             :   quotient.set_len (divmod_internal (quotient_val,
    2875             :                                      &remainder_len, remainder_val,
    2876             :                                      xi.val, xi.len, precision,
    2877             :                                      yi.val, yi.len, yi.precision, sgn, 0));
    2878             :   remainder.set_len (remainder_len);
    2879             : 
    2880             :   *remainder_ptr = remainder;
    2881             :   return quotient;
    2882             : }
    2883             : 
    2884             : /* Compute the greatest common divisor of two numbers A and B using
    2885             :    Euclid's algorithm.  */
    2886             : template <typename T1, typename T2>
    2887             : inline WI_BINARY_RESULT (T1, T2)
    2888             : wi::gcd (const T1 &a, const T2 &b, signop sgn)
    2889             : {
    2890             :   T1 x, y, z;
    2891             : 
    2892             :   x = wi::abs (a);
    2893             :   y = wi::abs (b);
    2894             : 
    2895             :   while (gt_p (x, 0, sgn))
    2896             :     {
    2897             :       z = mod_trunc (y, x, sgn);
    2898             :       y = x;
    2899             :       x = z;
    2900             :     }
    2901             : 
    2902             :   return y;
    2903             : }
    2904             : 
    2905             : /* Compute X / Y, rouding towards 0, and return the remainder.
    2906             :    Treat X and Y as having the signedness given by SGN.  Indicate
    2907             :    in *OVERFLOW if the division overflows.  */
    2908             : template <typename T1, typename T2>
    2909             : inline WI_BINARY_RESULT (T1, T2)
    2910             : wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
    2911             : {
    2912             :   WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
    2913             :   unsigned int precision = get_precision (remainder);
    2914             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2915             :   WIDE_INT_REF_FOR (T2) yi (y);
    2916             : 
    2917             :   unsigned int remainder_len;
    2918             :   divmod_internal (0, &remainder_len, remainder_val,
    2919             :                    xi.val, xi.len, precision,
    2920             :                    yi.val, yi.len, yi.precision, sgn, overflow);
    2921             :   remainder.set_len (remainder_len);
    2922             : 
    2923             :   return remainder;
    2924             : }
    2925             : 
    2926             : /* Compute X / Y, rouding towards 0, and return the remainder.
    2927             :    Treat X and Y as signed values.  */
    2928             : template <typename T1, typename T2>
    2929             : inline WI_BINARY_RESULT (T1, T2)
    2930             : wi::smod_trunc (const T1 &x, const T2 &y)
    2931             : {
    2932             :   return mod_trunc (x, y, SIGNED);
    2933             : }
    2934             : 
    2935             : /* Compute X / Y, rouding towards 0, and return the remainder.
    2936             :    Treat X and Y as unsigned values.  */
    2937             : template <typename T1, typename T2>
    2938             : inline WI_BINARY_RESULT (T1, T2)
    2939             : wi::umod_trunc (const T1 &x, const T2 &y)
    2940             : {
    2941             :   return mod_trunc (x, y, UNSIGNED);
    2942             : }
    2943             : 
    2944             : /* Compute X / Y, rouding towards -inf, and return the remainder.
    2945             :    Treat X and Y as having the signedness given by SGN.  Indicate
    2946             :    in *OVERFLOW if the division overflows.  */
    2947             : template <typename T1, typename T2>
    2948             : inline WI_BINARY_RESULT (T1, T2)
    2949             : wi::mod_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
    2950             : {
    2951             :   WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
    2952             :   WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
    2953             :   unsigned int precision = get_precision (quotient);
    2954             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2955             :   WIDE_INT_REF_FOR (T2) yi (y);
    2956             : 
    2957             :   unsigned int remainder_len;
    2958             :   quotient.set_len (divmod_internal (quotient_val,
    2959             :                                      &remainder_len, remainder_val,
    2960             :                                      xi.val, xi.len, precision,
    2961             :                                      yi.val, yi.len, yi.precision, sgn,
    2962             :                                      overflow));
    2963             :   remainder.set_len (remainder_len);
    2964             : 
    2965             :   if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
    2966             :     return remainder + y;
    2967             :   return remainder;
    2968             : }
    2969             : 
    2970             : /* Compute X / Y, rouding towards -inf, and return the remainder.
    2971             :    Treat X and Y as unsigned values.  */
    2972             : /* ??? Why do we have both this and umod_trunc.  Aren't they the same?  */
    2973             : template <typename T1, typename T2>
    2974             : inline WI_BINARY_RESULT (T1, T2)
    2975             : wi::umod_floor (const T1 &x, const T2 &y)
    2976             : {
    2977             :   return mod_floor (x, y, UNSIGNED);
    2978             : }
    2979             : 
    2980             : /* Compute X / Y, rouding towards +inf, and return the remainder.
    2981             :    Treat X and Y as having the signedness given by SGN.  Indicate
    2982             :    in *OVERFLOW if the division overflows.  */
    2983             : template <typename T1, typename T2>
    2984             : inline WI_BINARY_RESULT (T1, T2)
    2985             : wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
    2986             : {
    2987             :   WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
    2988             :   WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
    2989             :   unsigned int precision = get_precision (quotient);
    2990             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    2991             :   WIDE_INT_REF_FOR (T2) yi (y);
    2992             : 
    2993             :   unsigned int remainder_len;
    2994             :   quotient.set_len (divmod_internal (quotient_val,
    2995             :                                      &remainder_len, remainder_val,
    2996             :                                      xi.val, xi.len, precision,
    2997             :                                      yi.val, yi.len, yi.precision, sgn,
    2998             :                                      overflow));
    2999             :   remainder.set_len (remainder_len);
    3000             : 
    3001             :   if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
    3002             :     return remainder - y;
    3003             :   return remainder;
    3004             : }
    3005             : 
    3006             : /* Compute X / Y, rouding towards nearest with ties away from zero,
    3007             :    and return the remainder.  Treat X and Y as having the signedness
    3008             :    given by SGN.  Indicate in *OVERFLOW if the division overflows.  */
    3009             : template <typename T1, typename T2>
    3010             : inline WI_BINARY_RESULT (T1, T2)
    3011             : wi::mod_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
    3012             : {
    3013             :   WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
    3014             :   WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
    3015             :   unsigned int precision = get_precision (quotient);
    3016             :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    3017             :   WIDE_INT_REF_FOR (T2) yi (y);
    3018             : 
    3019             :   unsigned int remainder_len;
    3020             :   quotient.set_len (divmod_internal (quotient_val,
    3021             :                                      &remainder_len, remainder_val,
    3022             :                                      xi.val, xi.len, precision,
    3023             :                                      yi.val, yi.len, yi.precision, sgn,
    3024             :                                      overflow));
    3025             :   remainder.set_len (remainder_len);
    3026             : 
    3027             :   if (remainder != 0)
    3028             :     {
    3029             :       if (sgn == SIGNED)
    3030             :         {
    3031             :           WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
    3032             :           if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
    3033             :             {
    3034             :               if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
    3035             :                 return remainder + y;
    3036             :               else
    3037             :                 return remainder - y;
    3038             :             }
    3039             :         }
    3040             :       else
    3041             :         {
    3042             :           if (wi::geu_p (remainder, wi::sub (y, remainder)))
    3043             :             return remainder - y;
    3044             :         }
    3045             :     }
    3046             :   return remainder;
    3047             : }
    3048             : 
    3049             : /* Return true if X is a multiple of Y.  Treat X and Y as having the
    3050             :    signedness given by SGN.  */
    3051             : template <typename T1, typename T2>
    3052             : inline bool
    3053             : wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn)
    3054             : {
    3055             :   return wi::mod_trunc (x, y, sgn) == 0;
    3056             : }
    3057             : 
    3058             : /* Return true if X is a multiple of Y, storing X / Y in *RES if so.
    3059             :    Treat X and Y as having the signedness given by SGN.  */
    3060             : template <typename T1, typename T2>
    3061             : inline bool
    3062             : wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn,
    3063             :                    WI_BINARY_RESULT (T1, T2) *res)
    3064             : {
    3065             :   WI_BINARY_RESULT (T1, T2) remainder;
    3066             :   WI_BINARY_RESULT (T1, T2) quotient
    3067             :     = divmod_trunc (x, y, sgn, &remainder);
    3068             :   if (remainder == 0)
    3069             :     {
    3070             :       *res = quotient;
    3071             :       return true;
    3072             :     }
    3073             :   return false;
    3074             : }
    3075             : 
    3076             : /* Return X << Y.  Return 0 if Y is greater than or equal to
    3077             :    the precision of X.  */
    3078             : template <typename T1, typename T2>
    3079             : inline WI_UNARY_RESULT (T1)
    3080   103173325 : wi::lshift (const T1 &x, const T2 &y)
    3081             : {
    3082   103173325 :   WI_UNARY_RESULT_VAR (result, val, T1, x);
    3083   103173325 :   unsigned int precision = get_precision (result);
    3084   103173325 :   WIDE_INT_REF_FOR (T1) xi (x, precision);
    3085   103173325 :   WIDE_INT_REF_FOR (T2) yi (y);
    3086             :   /* Handle the simple cases quickly.   */
    3087   103173325 :   if (geu_p (yi, precision))
    3088             :     {
    3089           0 :       val[0] = 0;
    3090   103173325 :       result.set_len (1);
    3091             :     }
    3092             :   else
    3093             :     {
    3094   103173325 :       unsigned int shift = yi.to_uhwi ();
    3095             :       /* For fixed-precision integers like offset_int and widest_int,
    3096             :          handle the case where the shift value is constant and the
    3097             :          result is a single nonnegative HWI (meaning that we don't
    3098             :          need to worry about val[1]).  This is particularly common
    3099             :          for converting a byte count to a bit count.
    3100             : 
    3101             :          For variable-precision integers like wide_int, handle HWI
    3102             :          and sub-HWI integers inline.  */
    3103           0 :       if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
    3104   103173325 :           ? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1)
    3105           0 :              && xi.len == 1
    3106           0 :              && IN_RANGE (xi.val[0], 0, HOST_WIDE_INT_MAX >> shift))
    3107             :           : precision <= HOST_BITS_PER_WIDE_INT)
    3108             :         {
    3109           0 :           val[0] = xi.ulow () << shift;
    3110   103173325 :           result.set_len (1);
    3111             :         }
    3112             :       else
    3113   103173325 :         result.set_len (lshift_large (val, xi.val, xi.len,
    3114             :                                       precision, shift));
    3115             :     }
    3116   103173325 :   return result;
    3117             : }
    3118             : 
    3119             : /* Return X >> Y, using a logical shift.  Return 0 if Y is greater than
    3120             :    or equal to the precision of X.  */
    3121             : template <typename T1, typename T2>
    3122             : inline WI_UNARY_RESULT (T1)
    3123             : wi::lrshift (const T1 &x, const T2 &y)
    3124             : {
    3125             :   WI_UNARY_RESULT_VAR (result, val, T1, x);
    3126             :   /* Do things in the precision of the input rather than the output,
    3127             :      since the result can be no larger than that.  */
    3128             :   WIDE_INT_REF_FOR (T1) xi (x);
    3129             :   WIDE_INT_REF_FOR (T2) yi (y);
    3130             :   /* Handle the simple cases quickly.   */
    3131             :   if (geu_p (yi, xi.precision))
    3132             :     {
    3133             :       val[0] = 0;
    3134             :       result.set_len (1);
    3135             :     }
    3136             :   else
    3137             :     {
    3138             :       unsigned int shift = yi.to_uhwi ();
    3139             :       /* For fixed-precision integers like offset_int and widest_int,
    3140             :          handle the case where the shift value is constant and the
    3141             :          shifted value is a single nonnegative HWI (meaning that all
    3142             :          bits above the HWI are zero).  This is particularly common
    3143             :          for converting a bit count to a byte count.
    3144             : 
    3145             :          For variable-precision integers like wide_int, handle HWI
    3146             :          and sub-HWI integers inline.  */
    3147             :       if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
    3148             :           ? (shift < HOST_BITS_PER_WIDE_INT
    3149             :              && xi.len == 1
    3150             :              && xi.val[0] >= 0)
    3151             :           : xi.precision <= HOST_BITS_PER_WIDE_INT)
    3152             :         {
    3153             :           val[0] = xi.to_uhwi () >> shift;
    3154             :           result.set_len (1);
    3155             :         }
    3156             :       else
    3157             :         result.set_len (lrshift_large (val, xi.val, xi.len, xi.precision,
    3158             :                                        get_precision (result), shift));
    3159             :     }
    3160             :   return result;
    3161             : }
    3162             : 
    3163             : /* Return X >> Y, using an arithmetic shift.  Return a sign mask if
    3164             :    Y is greater than or equal to the precision of X.  */
    3165             : template <typename T1, typename T2>
    3166             : inline WI_UNARY_RESULT (T1)
    3167       53036 : wi::arshift (const T1 &x, const T2 &y)
    3168             : {
    3169       53036 :   WI_UNARY_RESULT_VAR (result, val, T1, x);
    3170             :   /* Do things in the precision of the input rather than the output,
    3171             :      since the result can be no larger than that.  */
    3172       53036 :   WIDE_INT_REF_FOR (T1) xi (x);
    3173       53036 :   WIDE_INT_REF_FOR (T2) yi (y);
    3174             :   /* Handle the simple cases quickly.   */
    3175       53036 :   if (geu_p (yi, xi.precision))
    3176             :     {
    3177           0 :       val[0] = sign_mask (x);
    3178       53036 :       result.set_len (1);
    3179             :     }
    3180             :   else
    3181             :     {
    3182       53036 :       unsigned int shift = yi.to_uhwi ();
    3183       53036 :       if (xi.precision <= HOST_BITS_PER_WIDE_INT)
    3184             :         {
    3185           0 :           val[0] = sext_hwi (xi.ulow () >> shift, xi.precision - shift);
    3186       53036 :           result.set_len (1, true);
    3187             :         }
    3188             :       else
    3189       53036 :         result.set_len (arshift_large (val, xi.val, xi.len, xi.precision,
    3190             :                                        get_precision (result), shift));
    3191             :     }
    3192       53036 :   return result;
    3193             : }
    3194             : 
    3195             : /* Return X >> Y, using an arithmetic shift if SGN is SIGNED and a
    3196             :    logical shift otherwise.  */
    3197             : template <typename T1, typename T2>
    3198             : inline WI_UNARY_RESULT (T1)
    3199             : wi::rshift (const T1 &x, const T2 &y, signop sgn)
    3200             : {
    3201             :   if (sgn == UNSIGNED)
    3202             :     return lrshift (x, y);
    3203             :   else
    3204             :     return arshift (x, y);
    3205             : }
    3206             : 
    3207             : /* Return the result of rotating the low WIDTH bits of X left by Y
    3208             :    bits and zero-extending the result.  Use a full-width rotate if
    3209             :    WIDTH is zero.  */
    3210             : template <typename T1, typename T2>
    3211             : WI_UNARY_RESULT (T1)
    3212             : wi::lrotate (const T1 &x, const T2 &y, unsigned int width)
    3213             : {
    3214             :   unsigned int precision = get_binary_precision (x, x);
    3215             :   if (width == 0)
    3216             :     width = precision;
    3217             :   WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
    3218             :   WI_UNARY_RESULT (T1) left = wi::lshift (x, ymod);
    3219             :   WI_UNARY_RESULT (T1) right
    3220             :     = wi::lrshift (width != precision ? wi::zext (x, width) : x,
    3221             :                    wi::sub (width, ymod));
    3222             :   if (width != precision)
    3223             :     return wi::zext (left, width) | right;
    3224             :   return left | right;
    3225             : }
    3226             : 
    3227             : /* Return the result of rotating the low WIDTH bits of X right by Y
    3228             :    bits and zero-extending the result.  Use a full-width rotate if
    3229             :    WIDTH is zero.  */
    3230             : template <typename T1, typename T2>
    3231             : WI_UNARY_RESULT (T1)
    3232             : wi::rrotate (const T1 &x, const T2 &y, unsigned int width)
    3233             : {
    3234             :   unsigned int precision = get_binary_precision (x, x);
    3235             :   if (width == 0)
    3236             :     width = precision;
    3237             :   WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
    3238             :   WI_UNARY_RESULT (T1) right
    3239             :     = wi::lrshift (width != precision ? wi::zext (x, width) : x, ymod);
    3240             :   WI_UNARY_RESULT (T1) left = wi::lshift (x, wi::sub (width, ymod));
    3241             :   if (width != precision)
    3242             :     return wi::zext (left, width) | right;
    3243             :   return left | right;
    3244             : }
    3245             : 
    3246             : /* Return 0 if the number of 1s in X is even and 1 if the number of 1s
    3247             :    is odd.  */
    3248             : inline int
    3249             : wi::parity (const wide_int_ref &x)
    3250             : {
    3251             :   return popcount (x) & 1;
    3252             : }
    3253             : 
    3254             : /* Extract WIDTH bits from X, starting at BITPOS.  */
    3255             : template <typename T>
    3256             : inline unsigned HOST_WIDE_INT
    3257             : wi::extract_uhwi (const T &x, unsigned int bitpos, unsigned int width)
    3258             : {
    3259             :   unsigned precision = get_precision (x);
    3260             :   if (precision < bitpos + width)
    3261             :     precision = bitpos + width;
    3262             :   WIDE_INT_REF_FOR (T) xi (x, precision);
    3263             : 
    3264             :   /* Handle this rare case after the above, so that we assert about
    3265             :      bogus BITPOS values.  */
    3266             :   if (width == 0)
    3267             :     return 0;
    3268             : 
    3269             :   unsigned int start = bitpos / HOST_BITS_PER_WIDE_INT;
    3270             :   unsigned int shift = bitpos % HOST_BITS_PER_WIDE_INT;
    3271             :   unsigned HOST_WIDE_INT res = xi.elt (start);
    3272             :   res >>= shift;
    3273             :   if (shift + width > HOST_BITS_PER_WIDE_INT)
    3274             :     {
    3275             :       unsigned HOST_WIDE_INT upper = xi.elt (start + 1);
    3276             :       res |= upper << (-shift % HOST_BITS_PER_WIDE_INT);
    3277             :     }
    3278             :   return zext_hwi (res, width);
    3279             : }
    3280             : 
    3281             : /* Return the minimum precision needed to store X with sign SGN.  */
    3282             : template <typename T>
    3283             : inline unsigned int
    3284             : wi::min_precision (const T &x, signop sgn)
    3285             : {
    3286             :   if (sgn == SIGNED)
    3287             :     return get_precision (x) - clrsb (x);
    3288             :   else
    3289             :     return get_precision (x) - clz (x);
    3290             : }
    3291             : 
    3292             : #define SIGNED_BINARY_PREDICATE(OP, F)                  \
    3293             :   template <typename T1, typename T2>                     \
    3294             :     inline WI_SIGNED_BINARY_PREDICATE_RESULT (T1, T2)   \
    3295             :     OP (const T1 &x, const T2 &y)                       \
    3296             :     {                                                   \
    3297             :       return wi::F (x, y);                              \
    3298             :     }
    3299             : 
    3300   270107716 : SIGNED_BINARY_PREDICATE (operator <, lts_p)
    3301      409396 : SIGNED_BINARY_PREDICATE (operator <=, les_p)
    3302             : SIGNED_BINARY_PREDICATE (operator >, gts_p)
    3303        3112 : SIGNED_BINARY_PREDICATE (operator >=, ges_p)
    3304             : 
    3305             : #undef SIGNED_BINARY_PREDICATE
    3306             : 
    3307             : #define UNARY_OPERATOR(OP, F) \
    3308             :   template<typename T> \
    3309             :   WI_UNARY_RESULT (generic_wide_int<T>) \
    3310             :   OP (const generic_wide_int<T> &x) \
    3311             :   { \
    3312             :     return wi::F (x); \
    3313             :   }
    3314             : 
    3315             : #define BINARY_PREDICATE(OP, F) \
    3316             :   template<typename T1, typename T2> \
    3317             :   WI_BINARY_PREDICATE_RESULT (T1, T2) \
    3318             :   OP (const T1 &x, const T2 &y) \
    3319             :   { \
    3320             :     return wi::F (x, y); \
    3321             :   }
    3322             : 
    3323             : #define BINARY_OPERATOR(OP, F) \
    3324             :   template<typename T1, typename T2> \
    3325             :   WI_BINARY_OPERATOR_RESULT (T1, T2) \
    3326             :   OP (const T1 &x, const T2 &y) \
    3327             :   { \
    3328             :     return wi::F (x, y); \
    3329             :   }
    3330             : 
    3331             : #define SHIFT_OPERATOR(OP, F) \
    3332             :   template<typename T1, typename T2> \
    3333             :   WI_BINARY_OPERATOR_RESULT (T1, T1) \
    3334             :   OP (const T1 &x, const T2 &y) \
    3335             :   { \
    3336             :     return wi::F (x, y); \
    3337             :   }
    3338             : 
    3339             : UNARY_OPERATOR (operator ~, bit_not)
    3340             : UNARY_OPERATOR (operator -, neg)
    3341     3333230 : BINARY_PREDICATE (operator ==, eq_p)
    3342     4511072 : BINARY_PREDICATE (operator !=, ne_p)
    3343             : BINARY_OPERATOR (operator &, bit_and)
    3344             : BINARY_OPERATOR (operator |, bit_or)
    3345             : BINARY_OPERATOR (operator ^, bit_xor)
    3346      234072 : BINARY_OPERATOR (operator +, add)
    3347      190542 : BINARY_OPERATOR (operator -, sub)
    3348          83 : BINARY_OPERATOR (operator *, mul)
    3349       53036 : SHIFT_OPERATOR (operator <<, lshift)
    3350             : 
    3351             : #undef UNARY_OPERATOR
    3352             : #undef BINARY_PREDICATE
    3353             : #undef BINARY_OPERATOR
    3354             : #undef SHIFT_OPERATOR
    3355             : 
    3356             : template <typename T1, typename T2>
    3357             : inline WI_SIGNED_SHIFT_RESULT (T1, T2)
    3358       53036 : operator >> (const T1 &x, const T2 &y)
    3359             : {
    3360       53036 :   return wi::arshift (x, y);
    3361             : }
    3362             : 
    3363             : template <typename T1, typename T2>
    3364             : inline WI_SIGNED_SHIFT_RESULT (T1, T2)
    3365             : operator / (const T1 &x, const T2 &y)
    3366             : {
    3367             :   return wi::sdiv_trunc (x, y);
    3368             : }
    3369             : 
    3370             : template <typename T1, typename T2>
    3371             : inline WI_SIGNED_SHIFT_RESULT (T1, T2)
    3372             : operator % (const T1 &x, const T2 &y)
    3373             : {
    3374             :   return wi::smod_trunc (x, y);
    3375             : }
    3376             : 
    3377             : template<typename T>
    3378             : void
    3379             : gt_ggc_mx (generic_wide_int <T> *)
    3380             : {
    3381             : }
    3382             : 
    3383             : template<typename T>
    3384             : void
    3385             : gt_pch_nx (generic_wide_int <T> *)
    3386             : {
    3387             : }
    3388             : 
    3389             : template<typename T>
    3390             : void
    3391             : gt_pch_nx (generic_wide_int <T> *, gt_pointer_operator, void *)
    3392             : {
    3393             : }
    3394             : 
    3395             : template<int N>
    3396             : void
    3397             : gt_ggc_mx (trailing_wide_ints <N> *)
    3398             : {
    3399             : }
    3400             : 
    3401             : template<int N>
    3402             : void
    3403             : gt_pch_nx (trailing_wide_ints <N> *)
    3404             : {
    3405             : }
    3406             : 
    3407             : template<int N>
    3408             : void
    3409             : gt_pch_nx (trailing_wide_ints <N> *, gt_pointer_operator, void *)
    3410             : {
    3411             : }
    3412             : 
    3413             : namespace wi
    3414             : {
    3415             :   /* Used for overloaded functions in which the only other acceptable
    3416             :      scalar type is a pointer.  It stops a plain 0 from being treated
    3417             :      as a null pointer.  */
    3418             :   struct never_used1 {};
    3419             :   struct never_used2 {};
    3420             : 
    3421             :   wide_int min_value (unsigned int, signop);
    3422             :   wide_int min_value (never_used1 *);
    3423             :   wide_int min_value (never_used2 *);
    3424             :   wide_int max_value (unsigned int, signop);
    3425             :   wide_int max_value (never_used1 *);
    3426             :   wide_int max_value (never_used2 *);
    3427             : 
    3428             :   /* FIXME: this is target dependent, so should be elsewhere.
    3429             :      It also seems to assume that CHAR_BIT == BITS_PER_UNIT.  */
    3430             :   wide_int from_buffer (const unsigned char *, unsigned int);
    3431             : 
    3432             : #ifndef GENERATOR_FILE
    3433             :   void to_mpz (const wide_int_ref &, mpz_t, signop);
    3434             : #endif
    3435             : 
    3436             :   wide_int mask (unsigned int, bool, unsigned int);
    3437             :   wide_int shifted_mask (unsigned int, unsigned int, bool, unsigned int);
    3438             :   wide_int set_bit_in_zero (unsigned int, unsigned int);
    3439             :   wide_int insert (const wide_int &x, const wide_int &y, unsigned int,
    3440             :                    unsigned int);
    3441             :   wide_int round_down_for_mask (const wide_int &, const wide_int &);
    3442             :   wide_int round_up_for_mask (const wide_int &, const wide_int &);
    3443             : 
    3444             :   wide_int mod_inv (const wide_int &a, const wide_int &b);
    3445             : 
    3446             :   template <typename T>
    3447             :   T mask (unsigned int, bool);
    3448             : 
    3449             :   template <typename T>
    3450             :   T shifted_mask (unsigned int, unsigned int, bool);
    3451             : 
    3452             :   template <typename T>
    3453             :   T set_bit_in_zero (unsigned int);
    3454             : 
    3455             :   unsigned int mask (HOST_WIDE_INT *, unsigned int, bool, unsigned int);
    3456             :   unsigned int shifted_mask (HOST_WIDE_INT *, unsigned int, unsigned int,
    3457             :                              bool, unsigned int);
    3458             :   unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
    3459             :                            unsigned int, unsigned int, bool);
    3460             : }
    3461             : 
    3462             : /* Return a PRECISION-bit integer in which the low WIDTH bits are set
    3463             :    and the other bits are clear, or the inverse if NEGATE_P.  */
    3464             : inline wide_int
    3465             : wi::mask (unsigned int width, bool negate_p, unsigned int precision)
    3466             : {
    3467             :   wide_int result = wide_int::create (precision);
    3468             :   result.set_len (mask (result.write_val (), width, negate_p, precision));
    3469             :   return result;
    3470             : }
    3471             : 
    3472             : /* Return a PRECISION-bit integer in which the low START bits are clear,
    3473             :    the next WIDTH bits are set, and the other bits are clear,
    3474             :    or the inverse if NEGATE_P.  */
    3475             : inline wide_int
    3476             : wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p,
    3477             :                   unsigned int precision)
    3478             : {
    3479             :   wide_int result = wide_int::create (precision);
    3480             :   result.set_len (shifted_mask (result.write_val (), start, width, negate_p,
    3481             :                                 precision));
    3482             :   return result;
    3483             : }
    3484             : 
    3485             : /* Return a PRECISION-bit integer in which bit BIT is set and all the
    3486             :    others are clear.  */
    3487             : inline wide_int
    3488             : wi::set_bit_in_zero (unsigned int bit, unsigned int precision)
    3489             : {
    3490             :   return shifted_mask (bit, 1, false, precision);
    3491             : }
    3492             : 
    3493             : /* Return an integer of type T in which the low WIDTH bits are set
    3494             :    and the other bits are clear, or the inverse if NEGATE_P.  */
    3495             : template <typename T>
    3496             : inline T
    3497             : wi::mask (unsigned int width, bool negate_p)
    3498             : {
    3499             :   STATIC_ASSERT (wi::int_traits<T>::precision);
    3500             :   T result;
    3501             :   result.set_len (mask (result.write_val (), width, negate_p,
    3502             :                         wi::int_traits <T>::precision));
    3503             :   return result;
    3504             : }
    3505             : 
    3506             : /* Return an integer of type T in which the low START bits are clear,
    3507             :    the next WIDTH bits are set, and the other bits are clear, or the
    3508             :    inverse if NEGATE_P.  */
    3509             : template <typename T>
    3510             : inline T
    3511       56507 : wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p)
    3512             : {
    3513             :   STATIC_ASSERT (wi::int_traits<T>::precision);
    3514       56507 :   T result;
    3515      113014 :   result.set_len (shifted_mask (result.write_val (), start, width,
    3516             :                                 negate_p,
    3517             :                                 wi::int_traits <T>::precision));
    3518             :   return result;
    3519             : }
    3520             : 
    3521             : /* Return an integer of type T in which bit BIT is set and all the
    3522             :    others are clear.  */
    3523             : template <typename T>
    3524             : inline T
    3525       56507 : wi::set_bit_in_zero (unsigned int bit)
    3526             : {
    3527       56507 :   return shifted_mask <T> (bit, 1, false);
    3528             : }
    3529             : 
    3530             : /* Accumulate a set of overflows into OVERFLOW.  */
    3531             : 
    3532             : inline void
    3533             : wi::accumulate_overflow (wi::overflow_type &overflow,
    3534             :                          wi::overflow_type suboverflow)
    3535             : {
    3536             :   if (!suboverflow)
    3537             :     return;
    3538             :   if (!overflow)
    3539             :     overflow = suboverflow;
    3540             :   else if (overflow != suboverflow)
    3541             :     overflow = wi::OVF_UNKNOWN;
    3542             : }
    3543             : 
    3544             : #endif /* WIDE_INT_H */

Generated by: LCOV version 1.16