LCOV - code coverage report
Current view: top level - gcc - bitmap.h (source / functions) Hit Total Coverage
Test: gcc.info Lines: 49 57 86.0 %
Date: 2023-07-19 08:18:47 Functions: 2 2 100.0 %

          Line data    Source code
       1             : /* Functions to support general ended bitmaps.
       2             :    Copyright (C) 1997-2023 Free Software Foundation, Inc.
       3             : 
       4             : This file is part of GCC.
       5             : 
       6             : GCC is free software; you can redistribute it and/or modify it under
       7             : the terms of the GNU General Public License as published by the Free
       8             : Software Foundation; either version 3, or (at your option) any later
       9             : version.
      10             : 
      11             : GCC is distributed in the hope that it will be useful, but WITHOUT ANY
      12             : WARRANTY; without even the implied warranty of MERCHANTABILITY or
      13             : FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
      14             : for more details.
      15             : 
      16             : You should have received a copy of the GNU General Public License
      17             : along with GCC; see the file COPYING3.  If not see
      18             : <http://www.gnu.org/licenses/>.  */
      19             : 
      20             : #ifndef GCC_BITMAP_H
      21             : #define GCC_BITMAP_H
      22             : 
      23             : /* Implementation of sparse integer sets as a linked list or tree.
      24             : 
      25             :    This sparse set representation is suitable for sparse sets with an
      26             :    unknown (a priori) universe.
      27             : 
      28             :    Sets are represented as double-linked lists of container nodes of
      29             :    type "struct bitmap_element" or as a binary trees of the same
      30             :    container nodes.  Each container node consists of an index for the
      31             :    first member that could be held in the container, a small array of
      32             :    integers that represent the members in the container, and pointers
      33             :    to the next and previous element in the linked list, or left and
      34             :    right children in the tree.  In linked-list form, the container
      35             :    nodes in the list are sorted in ascending order, i.e. the head of
      36             :    the list holds the element with the smallest member of the set.
      37             :    In tree form, nodes to the left have a smaller container index.
      38             : 
      39             :    For a given member I in the set:
      40             :      - the element for I will have index is I / (bits per element)
      41             :      - the position for I within element is I % (bits per element)
      42             : 
      43             :    This representation is very space-efficient for large sparse sets, and
      44             :    the size of the set can be changed dynamically without much overhead.
      45             :    An important parameter is the number of bits per element.  In this
      46             :    implementation, there are 128 bits per element.  This results in a
      47             :    high storage overhead *per element*, but a small overall overhead if
      48             :    the set is very sparse.
      49             : 
      50             :    The storage requirements for linked-list sparse sets are O(E), with E->N
      51             :    in the worst case (a sparse set with large distances between the values
      52             :    of the set members).
      53             : 
      54             :    This representation also works well for data flow problems where the size
      55             :    of the set may grow dynamically, but care must be taken that the member_p,
      56             :    add_member, and remove_member operations occur with a suitable access
      57             :    pattern.
      58             : 
      59             :    The linked-list set representation works well for problems involving very
      60             :    sparse sets.  The canonical example in GCC is, of course, the "set of
      61             :    sets" for some CFG-based data flow problems (liveness analysis, dominance
      62             :    frontiers, etc.).
      63             :    
      64             :    For random-access sparse sets of unknown universe, the binary tree
      65             :    representation is likely to be a more suitable choice.  Theoretical
      66             :    access times for the binary tree representation are better than those
      67             :    for the linked-list, but in practice this is only true for truely
      68             :    random access.
      69             : 
      70             :    Often the most suitable representation during construction of the set
      71             :    is not the best choice for the usage of the set.  For such cases, the
      72             :    "view" of the set can be changed from one representation to the other.
      73             :    This is an O(E) operation:
      74             : 
      75             :      * from list to tree view   : bitmap_tree_view
      76             :      * from tree to list view   : bitmap_list_view
      77             : 
      78             :    Traversing linked lists or trees can be cache-unfriendly.  Performance
      79             :    can be improved by keeping container nodes in the set grouped together
      80             :    in  memory, using a dedicated obstack for a set (or group of related
      81             :    sets).  Elements allocated on obstacks are released to a free-list and
      82             :    taken off the free list.  If multiple sets are allocated on the same
      83             :    obstack, elements freed from one set may be re-used for one of the other
      84             :    sets.  This usually helps avoid cache misses.
      85             : 
      86             :    A single free-list is used for all sets allocated in GGC space.  This is
      87             :    bad for persistent sets, so persistent sets should be allocated on an
      88             :    obstack whenever possible.
      89             : 
      90             :    For random-access sets with a known, relatively small universe size, the
      91             :    SparseSet or simple bitmap representations may be more efficient than a
      92             :    linked-list set.
      93             : 
      94             : 
      95             :    LINKED LIST FORM
      96             :    ================
      97             : 
      98             :    In linked-list form, in-order iterations of the set can be executed
      99             :    efficiently.  The downside is that many random-access operations are
     100             :    relatively slow, because the linked list has to be traversed to test
     101             :    membership (i.e. member_p/ add_member/remove_member).
     102             :    
     103             :    To improve the performance of this set representation, the last
     104             :    accessed element and its index are cached.  For membership tests on
     105             :    members close to recently accessed members, the cached last element
     106             :    improves membership test to a constant-time operation.
     107             : 
     108             :    The following operations can always be performed in O(1) time in
     109             :    list view:
     110             : 
     111             :      * clear                    : bitmap_clear
     112             :      * smallest_member          : bitmap_first_set_bit
     113             :      * pop_smallest             : bitmap_clear_first_set_bit
     114             :      * choose_one               : (not implemented, but could be
     115             :                                    in constant time)
     116             : 
     117             :    The following operations can be performed in O(E) time worst-case in
     118             :    list view (with E the number of elements in the linked list), but in
     119             :    O(1) time with a suitable access patterns:
     120             : 
     121             :      * member_p                 : bitmap_bit_p
     122             :      * add_member               : bitmap_set_bit / bitmap_set_range
     123             :      * remove_member            : bitmap_clear_bit / bitmap_clear_range
     124             : 
     125             :    The following operations can be performed in O(E) time in list view:
     126             : 
     127             :      * cardinality              : bitmap_count_bits
     128             :      * largest_member           : bitmap_last_set_bit (but this could
     129             :                                   in constant time with a pointer to
     130             :                                   the last element in the chain)
     131             :      * set_size                 : bitmap_last_set_bit
     132             : 
     133             :    In tree view the following operations can all be performed in O(log E)
     134             :    amortized time with O(E) worst-case behavior.
     135             : 
     136             :      * smallest_member
     137             :      * pop_smallest
     138             :      * largest_member
     139             :      * set_size
     140             :      * member_p
     141             :      * add_member
     142             :      * remove_member
     143             : 
     144             :    Additionally, the linked-list sparse set representation supports
     145             :    enumeration of the members in O(E) time:
     146             : 
     147             :      * forall                   : EXECUTE_IF_SET_IN_BITMAP
     148             :      * set_copy                 : bitmap_copy
     149             :      * set_intersection         : bitmap_intersect_p /
     150             :                                   bitmap_and / bitmap_and_into /
     151             :                                   EXECUTE_IF_AND_IN_BITMAP
     152             :      * set_union                : bitmap_ior / bitmap_ior_into
     153             :      * set_difference           : bitmap_intersect_compl_p /
     154             :                                   bitmap_and_comp / bitmap_and_comp_into /
     155             :                                   EXECUTE_IF_AND_COMPL_IN_BITMAP
     156             :      * set_disjuction           : bitmap_xor_comp / bitmap_xor_comp_into
     157             :      * set_compare              : bitmap_equal_p
     158             : 
     159             :    Some operations on 3 sets that occur frequently in data flow problems
     160             :    are also implemented:
     161             : 
     162             :      * A | (B & C)          : bitmap_ior_and_into
     163             :      * A | (B & ~C)         : bitmap_ior_and_compl /
     164             :                                   bitmap_ior_and_compl_into
     165             : 
     166             : 
     167             :    BINARY TREE FORM
     168             :    ================
     169             :    An alternate "view" of a bitmap is its binary tree representation.
     170             :    For this representation, splay trees are used because they can be
     171             :    implemented using the same data structures as the linked list, with
     172             :    no overhead for meta-data (like color, or rank) on the tree nodes.
     173             : 
     174             :    In binary tree form, random-access to the set is much more efficient
     175             :    than for the linked-list representation.  Downsides are the high cost
     176             :    of clearing the set, and the relatively large number of operations
     177             :    necessary to balance the tree.  Also, iterating the set members is
     178             :    not supported.
     179             :    
     180             :    As for the linked-list representation, the last accessed element and
     181             :    its index are cached, so that membership tests on the latest accessed
     182             :    members is a constant-time operation.  Other lookups take O(logE)
     183             :    time amortized (but O(E) time worst-case).
     184             : 
     185             :    The following operations can always be performed in O(1) time:
     186             : 
     187             :      * choose_one               : (not implemented, but could be
     188             :                                    implemented in constant time)
     189             : 
     190             :    The following operations can be performed in O(logE) time amortized
     191             :    but O(E) time worst-case, but in O(1) time if the same element is
     192             :    accessed.
     193             : 
     194             :      * member_p                 : bitmap_bit_p
     195             :      * add_member               : bitmap_set_bit
     196             :      * remove_member            : bitmap_clear_bit
     197             : 
     198             :    The following operations can be performed in O(logE) time amortized
     199             :    but O(E) time worst-case:
     200             : 
     201             :      * smallest_member          : bitmap_first_set_bit
     202             :      * largest_member           : bitmap_last_set_bit
     203             :      * set_size                 : bitmap_last_set_bit
     204             : 
     205             :    The following operations can be performed in O(E) time:
     206             : 
     207             :      * clear                    : bitmap_clear
     208             : 
     209             :    The binary tree sparse set representation does *not* support any form
     210             :    of enumeration, and does also *not* support logical operations on sets.
     211             :    The binary tree representation is only supposed to be used for sets
     212             :    on which many random-access membership tests will happen.  */
     213             : 
     214             : #include "obstack.h"
     215             : #include "array-traits.h"
     216             : 
     217             : /* Bitmap memory usage.  */
     218             : class bitmap_usage: public mem_usage
     219             : {
     220             : public:
     221             :   /* Default contructor.  */
     222             :   bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
     223             :   /* Constructor.  */
     224             :   bitmap_usage (size_t allocated, size_t times, size_t peak,
     225             :              uint64_t nsearches, uint64_t search_iter)
     226             :     : mem_usage (allocated, times, peak),
     227             :     m_nsearches (nsearches), m_search_iter (search_iter) {}
     228             : 
     229             :   /* Sum the usage with SECOND usage.  */
     230             :   bitmap_usage
     231             :   operator+ (const bitmap_usage &second)
     232             :   {
     233             :     return bitmap_usage (m_allocated + second.m_allocated,
     234             :                              m_times + second.m_times,
     235             :                              m_peak + second.m_peak,
     236             :                              m_nsearches + second.m_nsearches,
     237             :                              m_search_iter + second.m_search_iter);
     238             :   }
     239             : 
     240             :   /* Dump usage coupled to LOC location, where TOTAL is sum of all rows.  */
     241             :   inline void
     242             :   dump (mem_location *loc, const mem_usage &total) const
     243             :   {
     244             :     char *location_string = loc->to_string ();
     245             : 
     246             :     fprintf (stderr, "%-48s " PRsa (9) ":%5.1f%%"
     247             :              PRsa (9) PRsa (9) ":%5.1f%%"
     248             :              PRsa (11) PRsa (11) "%10s\n",
     249             :              location_string, SIZE_AMOUNT (m_allocated),
     250             :              get_percent (m_allocated, total.m_allocated),
     251             :              SIZE_AMOUNT (m_peak), SIZE_AMOUNT (m_times),
     252             :              get_percent (m_times, total.m_times),
     253             :              SIZE_AMOUNT (m_nsearches), SIZE_AMOUNT (m_search_iter),
     254             :              loc->m_ggc ? "ggc" : "heap");
     255             : 
     256             :     free (location_string);
     257             :   }
     258             : 
     259             :   /* Dump header with NAME.  */
     260             :   static inline void
     261             :   dump_header (const char *name)
     262             :   {
     263             :     fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak",
     264             :              "Times", "N searches", "Search iter", "Type");
     265             :   }
     266             : 
     267             :   /* Number search operations.  */
     268             :   uint64_t m_nsearches;
     269             :   /* Number of search iterations.  */
     270             :   uint64_t m_search_iter;
     271             : };
     272             : 
     273             : /* Bitmap memory description.  */
     274             : extern mem_alloc_description<bitmap_usage> bitmap_mem_desc;
     275             : 
     276             : /* Fundamental storage type for bitmap.  */
     277             : 
     278             : typedef unsigned long BITMAP_WORD;
     279             : /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
     280             :    it is used in preprocessor directives -- hence the 1u.  */
     281             : #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
     282             : 
     283             : /* Number of words to use for each element in the linked list.  */
     284             : 
     285             : #ifndef BITMAP_ELEMENT_WORDS
     286             : #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
     287             : #endif
     288             : 
     289             : /* Number of bits in each actual element of a bitmap.  */
     290             : 
     291             : #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
     292             : 
     293             : /* Obstack for allocating bitmaps and elements from.  */
     294             : struct bitmap_obstack {
     295             :   struct bitmap_element *elements;
     296             :   bitmap_head *heads;
     297             :   struct obstack obstack;
     298             : };
     299             : 
     300             : /* Bitmap set element.  We use a linked list to hold only the bits that
     301             :    are set.  This allows for use to grow the bitset dynamically without
     302             :    having to realloc and copy a giant bit array.
     303             : 
     304             :    The free list is implemented as a list of lists.  There is one
     305             :    outer list connected together by prev fields.  Each element of that
     306             :    outer is an inner list (that may consist only of the outer list
     307             :    element) that are connected by the next fields.  The prev pointer
     308             :    is undefined for interior elements.  This allows
     309             :    bitmap_elt_clear_from to be implemented in unit time rather than
     310             :    linear in the number of elements to be freed.  */
     311             : 
     312             : struct GTY((chain_next ("%h.next"))) bitmap_element {
     313             :   /* In list form, the next element in the linked list;
     314             :      in tree form, the left child node in the tree.  */
     315             :   struct bitmap_element *next;
     316             :   /* In list form, the previous element in the linked list;
     317             :      in tree form, the right child node in the tree.  */
     318             :   struct bitmap_element *prev;
     319             :   /* regno/BITMAP_ELEMENT_ALL_BITS.  */
     320             :   unsigned int indx;
     321             :   /* Bits that are set, counting from INDX, inclusive  */
     322             :   BITMAP_WORD bits[BITMAP_ELEMENT_WORDS];
     323             : };
     324             : 
     325             : /* Head of bitmap linked list.  The 'current' member points to something
     326             :    already pointed to by the chain started by first, so GTY((skip)) it.  */
     327             : 
     328             : class GTY(()) bitmap_head {
     329             : public:
     330             :   static bitmap_obstack crashme;
     331             :   /* Poison obstack to not make it not a valid initialized GC bitmap.  */
     332             :   CONSTEXPR bitmap_head()
     333             :     : indx (0), tree_form (false), padding (0), alloc_descriptor (0), first (NULL),
     334             :       current (NULL), obstack (&crashme)
     335             :   {}
     336             :   /* Index of last element looked at.  */
     337             :   unsigned int indx;
     338             :   /* False if the bitmap is in list form; true if the bitmap is in tree form.
     339             :      Bitmap iterators only work on bitmaps in list form.  */
     340             :   unsigned tree_form: 1;
     341             :   /* Next integer is shifted, so padding is needed.  */
     342             :   unsigned padding: 2;
     343             :   /* Bitmap UID used for memory allocation statistics.  */
     344             :   unsigned alloc_descriptor: 29;
     345             :   /* In list form, the first element in the linked list;
     346             :      in tree form, the root of the tree.   */
     347             :   bitmap_element *first;
     348             :   /* Last element looked at.  */
     349             :   bitmap_element * GTY((skip(""))) current;
     350             :   /* Obstack to allocate elements from.  If NULL, then use GGC allocation.  */
     351             :   bitmap_obstack * GTY((skip(""))) obstack;
     352             : 
     353             :   /* Dump bitmap.  */
     354             :   void dump ();
     355             : 
     356             :   /* Get bitmap descriptor UID casted to an unsigned integer pointer.
     357             :      Shift the descriptor because pointer_hash<Type>::hash is
     358             :      doing >> 3 shift operation.  */
     359             :   unsigned *get_descriptor ()
     360             :   {
     361             :     return (unsigned *)(ptrdiff_t)(alloc_descriptor << 3);
     362             :   }
     363             : };
     364             : 
     365             : /* Global data */
     366             : extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
     367             : extern bitmap_obstack bitmap_default_obstack;   /* Default bitmap obstack */
     368             : 
     369             : /* Change the view of the bitmap to list, or tree.  */
     370             : void bitmap_list_view (bitmap);
     371             : void bitmap_tree_view (bitmap);
     372             : 
     373             : /* Clear a bitmap by freeing up the linked list.  */
     374             : extern void bitmap_clear (bitmap);
     375             : 
     376             : /* Copy a bitmap to another bitmap.  */
     377             : extern void bitmap_copy (bitmap, const_bitmap);
     378             : 
     379             : /* Move a bitmap to another bitmap.  */
     380             : extern void bitmap_move (bitmap, bitmap);
     381             : 
     382             : /* True if two bitmaps are identical.  */
     383             : extern bool bitmap_equal_p (const_bitmap, const_bitmap);
     384             : 
     385             : /* True if the bitmaps intersect (their AND is non-empty).  */
     386             : extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
     387             : 
     388             : /* True if the complement of the second intersects the first (their
     389             :    AND_COMPL is non-empty).  */
     390             : extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
     391             : 
     392             : /* True if MAP is an empty bitmap.  */
     393         930 : inline bool bitmap_empty_p (const_bitmap map)
     394             : {
     395         930 :   return !map->first;
     396             : }
     397             : 
     398             : /* True if the bitmap has only a single bit set.  */
     399             : extern bool bitmap_single_bit_set_p (const_bitmap);
     400             : 
     401             : /* Count the number of bits set in the bitmap.  */
     402             : extern unsigned long bitmap_count_bits (const_bitmap);
     403             : 
     404             : /* Count the number of unique bits set across the two bitmaps.  */
     405             : extern unsigned long bitmap_count_unique_bits (const_bitmap, const_bitmap);
     406             : 
     407             : /* Boolean operations on bitmaps.  The _into variants are two operand
     408             :    versions that modify the first source operand.  The other variants
     409             :    are three operand versions that to not destroy the source bitmaps.
     410             :    The operations supported are &, & ~, |, ^.  */
     411             : extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
     412             : extern bool bitmap_and_into (bitmap, const_bitmap);
     413             : extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
     414             : extern bool bitmap_and_compl_into (bitmap, const_bitmap);
     415             : #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
     416             : extern void bitmap_compl_and_into (bitmap, const_bitmap);
     417             : extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
     418             : extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
     419             : extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
     420             : extern bool bitmap_ior_into (bitmap, const_bitmap);
     421             : extern bool bitmap_ior_into_and_free (bitmap, bitmap *);
     422             : extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
     423             : extern void bitmap_xor_into (bitmap, const_bitmap);
     424             : 
     425             : /* DST = A | (B & C).  Return true if DST changes.  */
     426             : extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
     427             : /* DST = A | (B & ~C).  Return true if DST changes.  */
     428             : extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
     429             :                                   const_bitmap B, const_bitmap C);
     430             : /* A |= (B & ~C).  Return true if A changes.  */
     431             : extern bool bitmap_ior_and_compl_into (bitmap A,
     432             :                                        const_bitmap B, const_bitmap C);
     433             : 
     434             : /* Clear a single bit in a bitmap.  Return true if the bit changed.  */
     435             : extern bool bitmap_clear_bit (bitmap, int);
     436             : 
     437             : /* Set a single bit in a bitmap.  Return true if the bit changed.  */
     438             : extern bool bitmap_set_bit (bitmap, int);
     439             : 
     440             : /* Return true if a bit is set in a bitmap.  */
     441             : extern bool bitmap_bit_p (const_bitmap, int);
     442             : 
     443             : /* Set and get multiple bit values in a sparse bitmap.  This allows a bitmap to
     444             :    function as a sparse array of bit patterns where the patterns are
     445             :    multiples of power of 2. This is more efficient than performing this as
     446             :    multiple individual operations.  */
     447             : void bitmap_set_aligned_chunk (bitmap, unsigned int, unsigned int, BITMAP_WORD);
     448             : BITMAP_WORD bitmap_get_aligned_chunk (const_bitmap, unsigned int, unsigned int);
     449             : 
     450             : /* Debug functions to print a bitmap.  */
     451             : extern void debug_bitmap (const_bitmap);
     452             : extern void debug_bitmap_file (FILE *, const_bitmap);
     453             : 
     454             : /* Print a bitmap.  */
     455             : extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
     456             : 
     457             : /* Initialize and release a bitmap obstack.  */
     458             : extern void bitmap_obstack_initialize (bitmap_obstack *);
     459             : extern void bitmap_obstack_release (bitmap_obstack *);
     460             : extern void bitmap_register (bitmap MEM_STAT_DECL);
     461             : extern void dump_bitmap_statistics (void);
     462             : 
     463             : /* Initialize a bitmap header.  OBSTACK indicates the bitmap obstack
     464             :    to allocate from, NULL for GC'd bitmap.  */
     465             : 
     466             : inline void
     467       64600 : bitmap_initialize (bitmap head, bitmap_obstack *obstack CXX_MEM_STAT_INFO)
     468             : {
     469       64600 :   head->first = head->current = NULL;
     470       64600 :   head->indx = head->tree_form = 0;
     471       64600 :   head->padding = 0;
     472       64600 :   head->alloc_descriptor = 0;
     473       64600 :   head->obstack = obstack;
     474       64600 :   if (GATHER_STATISTICS)
     475             :     bitmap_register (head PASS_MEM_STAT);
     476             : }
     477             : 
     478             : /* Release a bitmap (but not its head).  This is suitable for pairing with
     479             :    bitmap_initialize.  */
     480             : 
     481             : inline void
     482             : bitmap_release (bitmap head)
     483             : {
     484             :   bitmap_clear (head);
     485             :   /* Poison the obstack pointer so the obstack can be safely released.
     486             :      Do not zero it as the bitmap then becomes initialized GC.  */
     487             :   head->obstack = &bitmap_head::crashme;
     488             : }
     489             : 
     490             : /* Allocate and free bitmaps from obstack, malloc and gc'd memory.  */
     491             : extern bitmap bitmap_alloc (bitmap_obstack *obstack CXX_MEM_STAT_INFO);
     492             : #define BITMAP_ALLOC bitmap_alloc
     493             : extern bitmap bitmap_gc_alloc (ALONE_CXX_MEM_STAT_INFO);
     494             : #define BITMAP_GGC_ALLOC bitmap_gc_alloc
     495             : extern void bitmap_obstack_free (bitmap);
     496             : 
     497             : /* A few compatibility/functions macros for compatibility with sbitmaps */
     498             : inline void dump_bitmap (FILE *file, const_bitmap map)
     499             : {
     500             :   bitmap_print (file, map, "", "\n");
     501             : }
     502             : extern void debug (const bitmap_head &ref);
     503             : extern void debug (const bitmap_head *ptr);
     504             : 
     505             : extern unsigned bitmap_first_set_bit (const_bitmap);
     506             : extern unsigned bitmap_clear_first_set_bit (bitmap);
     507             : extern unsigned bitmap_last_set_bit (const_bitmap);
     508             : 
     509             : /* Compute bitmap hash (for purposes of hashing etc.)  */
     510             : extern hashval_t bitmap_hash (const_bitmap);
     511             : 
     512             : /* Do any cleanup needed on a bitmap when it is no longer used.  */
     513             : #define BITMAP_FREE(BITMAP) \
     514             :        ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
     515             : 
     516             : /* Iterator for bitmaps.  */
     517             : 
     518             : struct bitmap_iterator
     519             : {
     520             :   /* Pointer to the current bitmap element.  */
     521             :   bitmap_element *elt1;
     522             : 
     523             :   /* Pointer to 2nd bitmap element when two are involved.  */
     524             :   bitmap_element *elt2;
     525             : 
     526             :   /* Word within the current element.  */
     527             :   unsigned word_no;
     528             : 
     529             :   /* Contents of the actually processed word.  When finding next bit
     530             :      it is shifted right, so that the actual bit is always the least
     531             :      significant bit of ACTUAL.  */
     532             :   BITMAP_WORD bits;
     533             : };
     534             : 
     535             : /* Initialize a single bitmap iterator.  START_BIT is the first bit to
     536             :    iterate from.  */
     537             : 
     538             : inline void
     539         651 : bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
     540             :                    unsigned start_bit, unsigned *bit_no)
     541             : {
     542         651 :   bi->elt1 = map->first;
     543         651 :   bi->elt2 = NULL;
     544             : 
     545         651 :   gcc_checking_assert (!map->tree_form);
     546             : 
     547             :   /* Advance elt1 until it is not before the block containing start_bit.  */
     548         651 :   while (1)
     549             :     {
     550         651 :       if (!bi->elt1)
     551             :         {
     552           0 :           bi->elt1 = &bitmap_zero_bits;
     553           0 :           break;
     554             :         }
     555             : 
     556         651 :       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
     557             :         break;
     558           0 :       bi->elt1 = bi->elt1->next;
     559             :     }
     560             : 
     561             :   /* We might have gone past the start bit, so reinitialize it.  */
     562         651 :   if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
     563           0 :     start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
     564             : 
     565             :   /* Initialize for what is now start_bit.  */
     566         651 :   bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
     567         651 :   bi->bits = bi->elt1->bits[bi->word_no];
     568         651 :   bi->bits >>= start_bit % BITMAP_WORD_BITS;
     569             : 
     570             :   /* If this word is zero, we must make sure we're not pointing at the
     571             :      first bit, otherwise our incrementing to the next word boundary
     572             :      will fail.  It won't matter if this increment moves us into the
     573             :      next word.  */
     574         651 :   start_bit += !bi->bits;
     575             : 
     576         651 :   *bit_no = start_bit;
     577         651 : }
     578             : 
     579             : /* Initialize an iterator to iterate over the intersection of two
     580             :    bitmaps.  START_BIT is the bit to commence from.  */
     581             : 
     582             : inline void
     583             : bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
     584             :                    unsigned start_bit, unsigned *bit_no)
     585             : {
     586             :   bi->elt1 = map1->first;
     587             :   bi->elt2 = map2->first;
     588             : 
     589             :   gcc_checking_assert (!map1->tree_form && !map2->tree_form);
     590             : 
     591             :   /* Advance elt1 until it is not before the block containing
     592             :      start_bit.  */
     593             :   while (1)
     594             :     {
     595             :       if (!bi->elt1)
     596             :         {
     597             :           bi->elt2 = NULL;
     598             :           break;
     599             :         }
     600             : 
     601             :       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
     602             :         break;
     603             :       bi->elt1 = bi->elt1->next;
     604             :     }
     605             : 
     606             :   /* Advance elt2 until it is not before elt1.  */
     607             :   while (1)
     608             :     {
     609             :       if (!bi->elt2)
     610             :         {
     611             :           bi->elt1 = bi->elt2 = &bitmap_zero_bits;
     612             :           break;
     613             :         }
     614             : 
     615             :       if (bi->elt2->indx >= bi->elt1->indx)
     616             :         break;
     617             :       bi->elt2 = bi->elt2->next;
     618             :     }
     619             : 
     620             :   /* If we're at the same index, then we have some intersecting bits.  */
     621             :   if (bi->elt1->indx == bi->elt2->indx)
     622             :     {
     623             :       /* We might have advanced beyond the start_bit, so reinitialize
     624             :          for that.  */
     625             :       if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
     626             :         start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
     627             : 
     628             :       bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
     629             :       bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
     630             :       bi->bits >>= start_bit % BITMAP_WORD_BITS;
     631             :     }
     632             :   else
     633             :     {
     634             :       /* Otherwise we must immediately advance elt1, so initialize for
     635             :          that.  */
     636             :       bi->word_no = BITMAP_ELEMENT_WORDS - 1;
     637             :       bi->bits = 0;
     638             :     }
     639             : 
     640             :   /* If this word is zero, we must make sure we're not pointing at the
     641             :      first bit, otherwise our incrementing to the next word boundary
     642             :      will fail.  It won't matter if this increment moves us into the
     643             :      next word.  */
     644             :   start_bit += !bi->bits;
     645             : 
     646             :   *bit_no = start_bit;
     647             : }
     648             : 
     649             : /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.  */
     650             : 
     651             : inline void
     652             : bmp_iter_and_compl_init (bitmap_iterator *bi,
     653             :                          const_bitmap map1, const_bitmap map2,
     654             :                          unsigned start_bit, unsigned *bit_no)
     655             : {
     656             :   bi->elt1 = map1->first;
     657             :   bi->elt2 = map2->first;
     658             : 
     659             :   gcc_checking_assert (!map1->tree_form && !map2->tree_form);
     660             : 
     661             :   /* Advance elt1 until it is not before the block containing start_bit.  */
     662             :   while (1)
     663             :     {
     664             :       if (!bi->elt1)
     665             :         {
     666             :           bi->elt1 = &bitmap_zero_bits;
     667             :           break;
     668             :         }
     669             : 
     670             :       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
     671             :         break;
     672             :       bi->elt1 = bi->elt1->next;
     673             :     }
     674             : 
     675             :   /* Advance elt2 until it is not before elt1.  */
     676             :   while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
     677             :     bi->elt2 = bi->elt2->next;
     678             : 
     679             :   /* We might have advanced beyond the start_bit, so reinitialize for
     680             :      that.  */
     681             :   if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
     682             :     start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
     683             : 
     684             :   bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
     685             :   bi->bits = bi->elt1->bits[bi->word_no];
     686             :   if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
     687             :     bi->bits &= ~bi->elt2->bits[bi->word_no];
     688             :   bi->bits >>= start_bit % BITMAP_WORD_BITS;
     689             : 
     690             :   /* If this word is zero, we must make sure we're not pointing at the
     691             :      first bit, otherwise our incrementing to the next word boundary
     692             :      will fail.  It won't matter if this increment moves us into the
     693             :      next word.  */
     694             :   start_bit += !bi->bits;
     695             : 
     696             :   *bit_no = start_bit;
     697             : }
     698             : 
     699             : /* Advance to the next bit in BI.  We don't advance to the next
     700             :    nonzero bit yet.  */
     701             : 
     702             : inline void
     703         680 : bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
     704             : {
     705         680 :   bi->bits >>= 1;
     706         680 :   *bit_no += 1;
     707         680 : }
     708             : 
     709             : /* Advance to first set bit in BI.  */
     710             : 
     711             : inline void
     712         680 : bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
     713             : {
     714             : #if (GCC_VERSION >= 3004)
     715         680 :   {
     716         680 :     unsigned int n = __builtin_ctzl (bi->bits);
     717         680 :     gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
     718         680 :     bi->bits >>= n;
     719         680 :     *bit_no += n;
     720             :   }
     721             : #else
     722             :   while (!(bi->bits & 1))
     723             :     {
     724             :       bi->bits >>= 1;
     725             :       *bit_no += 1;
     726             :     }
     727             : #endif
     728             : }
     729             : 
     730             : /* Advance to the next nonzero bit of a single bitmap, we will have
     731             :    already advanced past the just iterated bit.  Return true if there
     732             :    is a bit to iterate.  */
     733             : 
     734             : inline bool
     735        1331 : bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
     736             : {
     737             :   /* If our current word is nonzero, it contains the bit we want.  */
     738        1331 :   if (bi->bits)
     739             :     {
     740         680 :     next_bit:
     741         680 :       bmp_iter_next_bit (bi, bit_no);
     742         680 :       return true;
     743             :     }
     744             : 
     745             :   /* Round up to the word boundary.  We might have just iterated past
     746             :      the end of the last word, hence the -1.  It is not possible for
     747             :      bit_no to point at the beginning of the now last word.  */
     748         651 :   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
     749         651 :              / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
     750         651 :   bi->word_no++;
     751             : 
     752           0 :   while (1)
     753             :     {
     754             :       /* Find the next nonzero word in this elt.  */
     755        1302 :       while (bi->word_no != BITMAP_ELEMENT_WORDS)
     756             :         {
     757         651 :           bi->bits = bi->elt1->bits[bi->word_no];
     758         651 :           if (bi->bits)
     759           0 :             goto next_bit;
     760         651 :           *bit_no += BITMAP_WORD_BITS;
     761         651 :           bi->word_no++;
     762             :         }
     763             : 
     764             :       /* Make sure we didn't remove the element while iterating.  */
     765         651 :       gcc_checking_assert (bi->elt1->indx != -1U);
     766             : 
     767             :       /* Advance to the next element.  */
     768         651 :       bi->elt1 = bi->elt1->next;
     769         651 :       if (!bi->elt1)
     770             :         return false;
     771           0 :       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
     772           0 :       bi->word_no = 0;
     773             :     }
     774             : }
     775             : 
     776             : /* Advance to the next nonzero bit of an intersecting pair of
     777             :    bitmaps.  We will have already advanced past the just iterated bit.
     778             :    Return true if there is a bit to iterate.  */
     779             : 
     780             : inline bool
     781             : bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
     782             : {
     783             :   /* If our current word is nonzero, it contains the bit we want.  */
     784             :   if (bi->bits)
     785             :     {
     786             :     next_bit:
     787             :       bmp_iter_next_bit (bi, bit_no);
     788             :       return true;
     789             :     }
     790             : 
     791             :   /* Round up to the word boundary.  We might have just iterated past
     792             :      the end of the last word, hence the -1.  It is not possible for
     793             :      bit_no to point at the beginning of the now last word.  */
     794             :   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
     795             :              / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
     796             :   bi->word_no++;
     797             : 
     798             :   while (1)
     799             :     {
     800             :       /* Find the next nonzero word in this elt.  */
     801             :       while (bi->word_no != BITMAP_ELEMENT_WORDS)
     802             :         {
     803             :           bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
     804             :           if (bi->bits)
     805             :             goto next_bit;
     806             :           *bit_no += BITMAP_WORD_BITS;
     807             :           bi->word_no++;
     808             :         }
     809             : 
     810             :       /* Advance to the next identical element.  */
     811             :       do
     812             :         {
     813             :           /* Make sure we didn't remove the element while iterating.  */
     814             :           gcc_checking_assert (bi->elt1->indx != -1U);
     815             : 
     816             :           /* Advance elt1 while it is less than elt2.  We always want
     817             :              to advance one elt.  */
     818             :           do
     819             :             {
     820             :               bi->elt1 = bi->elt1->next;
     821             :               if (!bi->elt1)
     822             :                 return false;
     823             :             }
     824             :           while (bi->elt1->indx < bi->elt2->indx);
     825             : 
     826             :           /* Make sure we didn't remove the element while iterating.  */
     827             :           gcc_checking_assert (bi->elt2->indx != -1U);
     828             : 
     829             :           /* Advance elt2 to be no less than elt1.  This might not
     830             :              advance.  */
     831             :           while (bi->elt2->indx < bi->elt1->indx)
     832             :             {
     833             :               bi->elt2 = bi->elt2->next;
     834             :               if (!bi->elt2)
     835             :                 return false;
     836             :             }
     837             :         }
     838             :       while (bi->elt1->indx != bi->elt2->indx);
     839             : 
     840             :       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
     841             :       bi->word_no = 0;
     842             :     }
     843             : }
     844             : 
     845             : /* Advance to the next nonzero bit in the intersection of
     846             :    complemented bitmaps.  We will have already advanced past the just
     847             :    iterated bit.  */
     848             : 
     849             : inline bool
     850             : bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
     851             : {
     852             :   /* If our current word is nonzero, it contains the bit we want.  */
     853             :   if (bi->bits)
     854             :     {
     855             :     next_bit:
     856             :       bmp_iter_next_bit (bi, bit_no);
     857             :       return true;
     858             :     }
     859             : 
     860             :   /* Round up to the word boundary.  We might have just iterated past
     861             :      the end of the last word, hence the -1.  It is not possible for
     862             :      bit_no to point at the beginning of the now last word.  */
     863             :   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
     864             :              / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
     865             :   bi->word_no++;
     866             : 
     867             :   while (1)
     868             :     {
     869             :       /* Find the next nonzero word in this elt.  */
     870             :       while (bi->word_no != BITMAP_ELEMENT_WORDS)
     871             :         {
     872             :           bi->bits = bi->elt1->bits[bi->word_no];
     873             :           if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
     874             :             bi->bits &= ~bi->elt2->bits[bi->word_no];
     875             :           if (bi->bits)
     876             :             goto next_bit;
     877             :           *bit_no += BITMAP_WORD_BITS;
     878             :           bi->word_no++;
     879             :         }
     880             : 
     881             :       /* Make sure we didn't remove the element while iterating.  */
     882             :       gcc_checking_assert (bi->elt1->indx != -1U);
     883             : 
     884             :       /* Advance to the next element of elt1.  */
     885             :       bi->elt1 = bi->elt1->next;
     886             :       if (!bi->elt1)
     887             :         return false;
     888             : 
     889             :       /* Make sure we didn't remove the element while iterating.  */
     890             :       gcc_checking_assert (! bi->elt2 || bi->elt2->indx != -1U);
     891             : 
     892             :       /* Advance elt2 until it is no less than elt1.  */
     893             :       while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
     894             :         bi->elt2 = bi->elt2->next;
     895             : 
     896             :       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
     897             :       bi->word_no = 0;
     898             :     }
     899             : }
     900             : 
     901             : /* If you are modifying a bitmap you are currently iterating over you
     902             :    have to ensure to
     903             :      - never remove the current bit;
     904             :      - if you set or clear a bit before the current bit this operation
     905             :        will not affect the set of bits you are visiting during the iteration;
     906             :      - if you set or clear a bit after the current bit it is unspecified
     907             :        whether that affects the set of bits you are visiting during the
     908             :        iteration.
     909             :    If you want to remove the current bit you can delay this to the next
     910             :    iteration (and after the iteration in case the last iteration is
     911             :    affected).  */
     912             : 
     913             : /* Loop over all bits set in BITMAP, starting with MIN and setting
     914             :    BITNUM to the bit number.  ITER is a bitmap iterator.  BITNUM
     915             :    should be treated as a read-only variable as it contains loop
     916             :    state.  */
     917             : 
     918             : #ifndef EXECUTE_IF_SET_IN_BITMAP
     919             : /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP.  */
     920             : #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER)             \
     921             :   for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM));         \
     922             :        bmp_iter_set (&(ITER), &(BITNUM));                               \
     923             :        bmp_iter_next (&(ITER), &(BITNUM)))
     924             : #endif
     925             : 
     926             : /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
     927             :    and setting BITNUM to the bit number.  ITER is a bitmap iterator.
     928             :    BITNUM should be treated as a read-only variable as it contains
     929             :    loop state.  */
     930             : 
     931             : #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER)   \
     932             :   for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),             \
     933             :                           &(BITNUM));                                       \
     934             :        bmp_iter_and (&(ITER), &(BITNUM));                               \
     935             :        bmp_iter_next (&(ITER), &(BITNUM)))
     936             : 
     937             : /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
     938             :    and setting BITNUM to the bit number.  ITER is a bitmap iterator.
     939             :    BITNUM should be treated as a read-only variable as it contains
     940             :    loop state.  */
     941             : 
     942             : #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
     943             :   for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),       \
     944             :                                 &(BITNUM));                         \
     945             :        bmp_iter_and_compl (&(ITER), &(BITNUM));                         \
     946             :        bmp_iter_next (&(ITER), &(BITNUM)))
     947             : 
     948             : /* A class that ties the lifetime of a bitmap to its scope.  */
     949             : class auto_bitmap
     950             : {
     951             :  public:
     952             :   auto_bitmap (ALONE_CXX_MEM_STAT_INFO)
     953             :     { bitmap_initialize (&m_bits, &bitmap_default_obstack PASS_MEM_STAT); }
     954             :   explicit auto_bitmap (bitmap_obstack *o CXX_MEM_STAT_INFO)
     955             :     { bitmap_initialize (&m_bits, o PASS_MEM_STAT); }
     956             :   ~auto_bitmap () { bitmap_clear (&m_bits); }
     957             :   // Allow calling bitmap functions on our bitmap.
     958             :   operator bitmap () { return &m_bits; }
     959             : 
     960             :  private:
     961             :   // Prevent making a copy that references our bitmap.
     962             :   auto_bitmap (const auto_bitmap &);
     963             :   auto_bitmap &operator = (const auto_bitmap &);
     964             :   auto_bitmap (auto_bitmap &&);
     965             :   auto_bitmap &operator = (auto_bitmap &&);
     966             : 
     967             :   bitmap_head m_bits;
     968             : };
     969             : 
     970             : extern void debug (const auto_bitmap &ref);
     971             : extern void debug (const auto_bitmap *ptr);
     972             : 
     973             : /* Base class for bitmap_view; see there for details.  */
     974             : template<typename T, typename Traits = array_traits<T> >
     975             : class base_bitmap_view
     976             : {
     977             : public:
     978             :   typedef typename Traits::element_type array_element_type;
     979             : 
     980             :   base_bitmap_view (const T &, bitmap_element *);
     981             :   operator const_bitmap () const { return &m_head; }
     982             : 
     983             : private:
     984             :   base_bitmap_view (const base_bitmap_view &);
     985             : 
     986             :   bitmap_head m_head;
     987             : };
     988             : 
     989             : /* Provides a read-only bitmap view of a single integer bitmask or a
     990             :    constant-sized array of integer bitmasks, or of a wrapper around such
     991             :    bitmasks.  */
     992             : template<typename T, typename Traits>
     993             : class bitmap_view<T, Traits, true> : public base_bitmap_view<T, Traits>
     994             : {
     995             : public:
     996             :   bitmap_view (const T &array)
     997             :     : base_bitmap_view<T, Traits> (array, m_bitmap_elements) {}
     998             : 
     999             : private:
    1000             :   /* How many bitmap_elements we need to hold a full T.  */
    1001             :   static const size_t num_bitmap_elements
    1002             :     = CEIL (CHAR_BIT
    1003             :             * sizeof (typename Traits::element_type)
    1004             :             * Traits::constant_size,
    1005             :             BITMAP_ELEMENT_ALL_BITS);
    1006             :   bitmap_element m_bitmap_elements[num_bitmap_elements];
    1007             : };
    1008             : 
    1009             : /* Initialize the view for array ARRAY, using the array of bitmap
    1010             :    elements in BITMAP_ELEMENTS (which is known to contain enough
    1011             :    entries).  */
    1012             : template<typename T, typename Traits>
    1013             : base_bitmap_view<T, Traits>::base_bitmap_view (const T &array,
    1014             :                                                bitmap_element *bitmap_elements)
    1015             : {
    1016             :   m_head.obstack = NULL;
    1017             : 
    1018             :   /* The code currently assumes that each element of ARRAY corresponds
    1019             :      to exactly one bitmap_element.  */
    1020             :   const size_t array_element_bits = CHAR_BIT * sizeof (array_element_type);
    1021             :   STATIC_ASSERT (BITMAP_ELEMENT_ALL_BITS % array_element_bits == 0);
    1022             :   size_t array_step = BITMAP_ELEMENT_ALL_BITS / array_element_bits;
    1023             :   size_t array_size = Traits::size (array);
    1024             : 
    1025             :   /* Process each potential bitmap_element in turn.  The loop is written
    1026             :      this way rather than per array element because usually there are
    1027             :      only a small number of array elements per bitmap element (typically
    1028             :      two or four).  The inner loops should therefore unroll completely.  */
    1029             :   const array_element_type *array_elements = Traits::base (array);
    1030             :   unsigned int indx = 0;
    1031             :   for (size_t array_base = 0;
    1032             :        array_base < array_size;
    1033             :        array_base += array_step, indx += 1)
    1034             :     {
    1035             :       /* How many array elements are in this particular bitmap_element.  */
    1036             :       unsigned int array_count
    1037             :         = (STATIC_CONSTANT_P (array_size % array_step == 0)
    1038             :            ? array_step : MIN (array_step, array_size - array_base));
    1039             : 
    1040             :       /* See whether we need this bitmap element.  */
    1041             :       array_element_type ior = array_elements[array_base];
    1042             :       for (size_t i = 1; i < array_count; ++i)
    1043             :         ior |= array_elements[array_base + i];
    1044             :       if (ior == 0)
    1045             :         continue;
    1046             : 
    1047             :       /* Grab the next bitmap element and chain it.  */
    1048             :       bitmap_element *bitmap_element = bitmap_elements++;
    1049             :       if (m_head.current)
    1050             :         m_head.current->next = bitmap_element;
    1051             :       else
    1052             :         m_head.first = bitmap_element;
    1053             :       bitmap_element->prev = m_head.current;
    1054             :       bitmap_element->next = NULL;
    1055             :       bitmap_element->indx = indx;
    1056             :       m_head.current = bitmap_element;
    1057             :       m_head.indx = indx;
    1058             : 
    1059             :       /* Fill in the bits of the bitmap element.  */
    1060             :       if (array_element_bits < BITMAP_WORD_BITS)
    1061             :         {
    1062             :           /* Multiple array elements fit in one element of
    1063             :              bitmap_element->bits.  */
    1064             :           size_t array_i = array_base;
    1065             :           for (unsigned int word_i = 0; word_i < BITMAP_ELEMENT_WORDS;
    1066             :                ++word_i)
    1067             :             {
    1068             :               BITMAP_WORD word = 0;
    1069             :               for (unsigned int shift = 0;
    1070             :                    shift < BITMAP_WORD_BITS && array_i < array_size;
    1071             :                    shift += array_element_bits)
    1072             :                 word |= array_elements[array_i++] << shift;
    1073             :               bitmap_element->bits[word_i] = word;
    1074             :             }
    1075             :         }
    1076             :       else
    1077             :         {
    1078             :           /* Array elements are the same size as elements of
    1079             :              bitmap_element->bits, or are an exact multiple of that size.  */
    1080             :           unsigned int word_i = 0;
    1081             :           for (unsigned int i = 0; i < array_count; ++i)
    1082             :             for (unsigned int shift = 0; shift < array_element_bits;
    1083             :                  shift += BITMAP_WORD_BITS)
    1084             :               bitmap_element->bits[word_i++]
    1085             :                 = array_elements[array_base + i] >> shift;
    1086             :           while (word_i < BITMAP_ELEMENT_WORDS)
    1087             :             bitmap_element->bits[word_i++] = 0;
    1088             :         }
    1089             :     }
    1090             : }
    1091             : 
    1092             : #endif /* GCC_BITMAP_H */

Generated by: LCOV version 1.16